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Abstract

This paper shows how a system of ordinary differential equations describing the evolution of the anaerobic
energy, the oxygen uptake, the propulsive force and the velocity of a runner accurately describes pacing
strategy. We find a protocol to identify the physiological parameters needed in the model using numerical
simulations and time splits measurements for an 80m and a 1600m race. The velocity curve of the simulations
is very close to the experimental one. This model could allow to study the influence of training and improving
some specific parameters for the pacing strategy.

1. Introduction

The purpose of this study is to show that the model introduced in [1] accurately describes pacing
strategy and to produce a way to compute the necessary physiological parameters given some
time splits measurements on runners. Given a fixed distance to run, the idea is to determine the
best pacing strategy and time performance.

Keller [6, 7] was the first to write a model to describe an optimal race. It is based on energy
conservation and the fundamental principal of dynamics. With his simple model, and relying on
constant maximal oxygen uptake (constant V̇ O2), he found that he could nevertheless reasonably
predict the time of world records for distances bigger than 400m. Several improvements of
Keller’s model have been introduced: the effect of fatigue [18, 8], the variation in maximal
oxygen uptake [2], air resistance and altitude [13]. Other related works include [17, 9, 10, 12].

The recent work of [1] provides a system of equations taking into account a better description
of physiology, based on the ideas of Keller, but encompassing a variable V̇ O2 and modeling the
anaerobic energy using some ideas of the hydraulic analogy of Margaria, Morton [10]. Namely,
we fix a distance D to run and we want to optimize on the time to run it. The model predicts
instantaneously the velocity of the runner, his propulsive force, his oxygen uptake and his anaer-
obic energy. It relies on four physiological parameters: V̇ O2max, the maximal oxygen uptake, e0,
the total available anaerobic energy, τ , the characteristic time of acceleration, or equivalently the
internal resistance of the body and fmax, the maximal propulsive force. These parameters are
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not accessible by direct measurements. The aim of this study is to show that these four param-
eters can be determined from time splits of a run. From these estimated parameters, the model
accurately describes real races. Additionally, the equations give access to v(t), the velocity, e(t)
the anaerobic energy, f(t) the propulsive force.

Let us now introduce our model. The first equation is the equation of motion, as in Keller’s
paper:

dv

dt
(t) + v(t)

τ
= f(t) (1.1)

where t is the time, v(t) is the instantaneous velocity, f(t) is the propulsive force per unit mass
and v/τ is a resistive force per unit mass. We point out that other friction effects can be taken
into account, such as air resistance or variations of altitude, but for simplicity of presentation,
we do not include them here. Constraints have to be imposed; the force is controlled by the
runner but it cannot exceed a maximal value fmax per unit mass, that is

0 ≤ f(t) ≤ fmax. (1.2)
We now have to write the energy equation. In Keller’s paper, the rate of oxygen uptake is

assumed to be constant, called σ̄. The energy balance is achieved by taking into account the
creation of energy due to the oxygen uptake and the loss due to the work of the propulsive force:

de

dt
(t) = σ̄ − f(t)v(t). (1.3)

The aim is to
Minimize the time T given the distance D =

∫ T

0
v(t) dt, (1.4)

with the conditions:
v(0) = 0, e(0) = e0 under the constraint e(t) ≥ 0, (1.5)

and solving (1.1)-(1.2)-(1.3). This optimal control problem leads to a race in three parts (for
distances bigger than 400m):

(1) the propulsive force is at its maximal value and the runner speeds up,

(2) constant velocity is reached for the biggest part of the race,

(3) the velocity and the propulsive force decrease on a zero energy branch.

These three parts have been proved to exist in this order in [1], where additionally, it is explained
that Keller’s model in fact describes the anaerobic energy through the accumulated oxygen
deficit, rather than the aerobic energy as he had claimed. The velocity profiles obtained by
simulating Keller’s model display some inaccuracies with respect to reality, in particular since
the end of the race is usually done by speeding up instead of slowing down. The idea of the new
model introduced in [1] is to take into account the fact that the oxygen uptake varies along the
race. In particular, a drop in the rate of oxygen uptake V̇ O2, at the end of the race, leads to an
increase of velocity and propulsive force.

The experimental results of [4, 5] show that the rate of oxygen uptake V̇ O2 is not
constant throughout the race but, on a 1500m, rises steadily from an initial value of about
12mlmin−1 kg−1 to its maximum value 66mlmin−1 kg−1 over the first 20 to 40 seconds of the
race and then drops to 60 in the last 200m. Using the Respiratory Exchange Ratio which pre-
dicts that 1 L of oxygen in the body produces an energy of 20 kJ, the rate of oxygen uptake
available for an effort can be converted into an energetic equivalent per unit of mass. This
equivalent depends on the intensity of effort and can vary from 19 to 21, but 20 is a good av-
erage value [11]. We recall that 1 J = 1 kgm2 s−2 and that the experimental values of V̇ O2 are
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per minutes instead of per second. Hence the energetic equivalent per unit time and per kg of
V̇ O2 is measured in m2 s−3 and is thus 60/20 = 3 times smaller than the experimental value of
V̇ O2 measured in mlmin−1 kg−1. We call this energetic equivalent σ. In [1], a function σ is built
up in order to reproduce the experimental measurements of V̇ O2, but instead of writing it as a
function of time, it is written as a function of the available anaerobic energy. The last part of the
race, is the easiest one to understand: it takes into account that there are limitations when the
energy supply is small. The experimental results of [4, 5] show that the rate of oxygen uptake
falls slightly at the end of the race, dropping from 66 to about 60 over the last 200m to 250m.
When the anaerobic energy e is too small, we quantify the drop in σ on the first line of (1.6). In
the middle part of the race, the oxygen uptake is constant as chosen on the second line of (1.6).
There is an initial phase of the race where σ rises linearly from its rest value to its maximal
value. The value at which σ reaches σ̄ is not a fixed fraction of e0, but rather depends on the
runner, in the sense that e0 − e is fixed. A hydraulic analogy is used in [1] to better identify
the link between aerobic and anaerobic energy in the race: it is assumed that the aerobic energy
is of infinite capacity and flows at a maximal rate of σ̄ into the anaerobic container which is
of finite capacity. The flow from the aerobic container is proportional to the difference of fluid
heights in the containers. Therefore, the difference e0 − e is related to the non dimensionalized
height of the container and, when it reaches the critical value γ2, the flow becomes constant at
rate σ̄. This value γ2 is related to the height at which the aerobic container is connected to the
anaerobic one, but not to the full volume of the anaerobic container.

This leads to the following function introduced in [1] depending on the anaerobic energy e(t):

σ(e) =


σ̄ e
e0γ1

+ σf (1− e
e0γ1

) if e
e0 < γ1

σ̄ if γ1 ≤ e
e0 and γ2 ≤ e0 − e

σr + (σ̄ − σr) e
0−e
γ2

if 0 ≤ e0 − e ≤ γ2,

(1.6)

where σr is the rest value, σf the final value and σ̄ the maximal value.
Numerically, we choose σr = 6, σf = 20, σ̄ = 22, γ1 = 0.15 and γ2 = 566, which is close to e0/4,

given the values of e0 used. In order to avoid piecewise linear functions, we make a regularization.
Figure 1.1 plots σ(e(t)) as a function of time. Since the energy e(t) is a decreasing function of
time (roughly linearly), at t = 0, e = e0 and σ = σr and at the final time, e = 0, and σ = σf .
The plot of σ(e(t)) looks in reverse order with respect to σ(e).
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Figure 1.1. Energy equivalent of oxygen uptake (measured in m2s−3) vs time
for a 1500m.
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This allows us to write an equation for the anaerobic energy which takes into account the
work of the propulsive force and the variations of oxygen uptake:

de

dt
(t) = σ(e(t))− f(t)v(t). (1.7)

Equations (1.1)-(1.2)-(1.5)-(1.6)-(1.7) with the aim (1.4) is a well defined optimal control
problem. We solve it with the optimal control solver Bocop [3] to find the numerical optimal
solution. More details are given in [1]. For a 1500m, this yields the function σ(e) of Figure 1.1,
which is consistent with the experimental results of [4, 5].

The aim of this study is to determine the four parameters of a runner: τ , fmax, e0, σ̄. To
this end, we have to find the optimal race described by the model which is the closest to the
experimental race performed by a runner. The dashed lines in Figures 3.1, 3.2, 3.3 and 3.4
present the computed velocity curve for four different runners. It is made of 3 parts:

• an initial acceleration with the propulsive force at its maximal value,

• an almost constant speed,

• a speed up at the end of the race where the maximal propulsive force is put back.

We introduce an experimental protocol which is described below to determine the physiological
parameters.

2. Experimental Method

2.1. Protocol

Two races of 80m and 1600m were performed by 4 experimented runners, 3 males and 1 female
aged 21-22. They ran alone and had been instructed to perform their optimal race, without any
instruction during the race. The races were filmed and analyzed to determine the instantaneous
speed. All subjects consented to participate in the experiment upon being informed of the pur-
pose of the study and the protocol, and provided written informed consent, which was approved
by the local ethics committee.

2.1.1. Experimental set up

Position markers were set up along the 80m track every 2 meters. A video camera (Sony handy-
cam, HDR-CX350) was placed in the center of the athletic track on a foot that allowed horizontal
rotation. This rotation allowed the cameraman to film the entire race by targeting at the runner.
A piece of paper (10× 30 cm) was placed on the left size of the runner’s chest. We consider the
runner is overcoming a marker when the camera, the piece of paper and the marker are aligned.
The 80m race movie was analysed in order to determine the speed data. After the analysis, the
trackers gave 40 time measurements and the speed could be computed by: vi = ti−ti−1

d0
with

d0 = 2m.

For the 1600m race, in order to register precise speed data with a relative quick analysis,
the analysis was divided into three parts. The speed data were registered with a video at the
beginning and at the end of the race, where the speed fluctuations are the most significant. So,
for the first 40m and the final 40m, the speed data were collected with the same process as for
the 80m race. We used a GARMIN watch to register the data of the middle of the race.

These two analysis led us to curves showing the speed as a function of time for the 80m race
and the 1600m race.
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2.2. Description of the computational process

The aim is to compute the four physiological parameters of a runner, τ , fmax, e0, σ̄ from (1.1)-
(1.2)-(1.5)-(1.6)-(1.7) with the aim (1.4).

• Step 1: Construction of admissible parameters for a runner

(1) Using the experimental 80m race, one can determine admissible parameters
(fmax, τ). Indeed, in this case, the model predicts the velocity profile v(t) =
fmaxτ(1−exp (− t

τ )). To have an estimate of the parameters (fmax, τ), one has to ex-
tract from the 80m data two observations points (texp1 , vexp(t1)) and (texp2 , vexp(t2)).
One can evaluate analytical expression of v(t) at these points: it results in a two
equations system with two unknowns. One can repeat this for other 80m observa-
tions points, and therefore get multiple admissible parameters (fmax, τ).

(2) In order to get a first approximation of σ̄, one can use the Cooper test which consists
in running for 12min. The distance covered and the age provide a reasonnable
estimate of σ̄. Moreover, it is possible to make some assumptions based on the
physiology of the observed runner. Then one can take several values uniformly
distributed around the first guess of σ̄.

(3) It is then possible to compute an estimate for e0, using equation (1.7) in the middle
part of the race where the velocity is almost constant and σ equal to its maximal
value σ̄. This formula depends on σ̄, τ and the starting time tbeg and the final time
tend of this constant speed phase. For all previous admissible parameters, and all
estimates (t1, t2) of (tbeg, tend), one can compute multiple admissible initial anaerobic
energy through e0 = 1

1−γ1
[σ̄(t2 − t1) + γ2 − 1

2(v2(t2)− v2(t1))−
∫ t2
t1

v2(s)
τ ds].

• Step 2: Determination of the best parameters among admissible ones. From step 1, one
can get a list of admissible quadruplets (fmax, τ, σ̄, e0).

(1) Given this list of admissible parameters, one has to launch the computation of the
model’s optimal control problem for each quadruplets as inputs. For each simulation,
outputs of matter are velocity values vnum(ti) i = 1, 2..Nnum, where Nnum depends
on the numerical discretisation. It is also necessary to store a one to one mapping,
between vector of velocity values and associated quadruplets of parameters. Com-
putation of all the optimal races are performed with the BOCOP software [3] for
each quadruplet included in the intervals made in the first step. An average of 200
computations must be made in order to get precise results.

(2) The criterion of selection is based on the least square method for the computed
speed vectors ~vnum and the 1600m observation ~vexp. More precisely, the runner’s
parameters would be those which minimize :

∑Nexp

i=1 (vnum(i)− vexp(i))2 + ν | Texp−
Tnum |. The second term penalizes numerical races with a final time different from
the observed one.

As a summary, we see that the 80m race is used to get rough estimates for τ and fmax. An
approximate value of V̇ O2max is required and an approximate value of e0 is computed. Then
more precise values of the parameters are obtained thanks to the time splits for the 1600m race
using a least square method.

3. Results

The computation of the parameters is summarized in Table 3.1, where Tf is the final time for
the 1600m race.
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Runner τ fmax e0 σ Tf

A 0.87 8.80 1250 22.5 353.6
B 0.92 7.64 1456 23 339.2
C 0.82 9.52 3702 23.5 309.5
D 0.75 8.49 2500 17 399.6

Table 3.1. Parameters obtained using our protocol for the four runners

Then the optimal race solving (1.1)-(1.2)-(1.5)-(1.6)-(1.7) with the aim (1.4) using the pa-
rameters of Table 3.1 is computed. This computation is illustrated with the dashed line in
Figures 3.1, 3.2, 3.3 and 3.4, while the solid line are the experimental points. We can see that
the optimal run computed is close to the experimental one. Only runner D ends the race with
the optimal acceleration and slight decrease. Runner A has a much stronger acceleration in the
end, probably due to psychological factors (being able to push more strongly close to the finish
line). As for runners B and C, it may be that their decrease in V̇ O2 is stronger than the one
we have modelled. Indeed, γ1, γ2 and σf are fixed parameters in the simulations, but in a more
complete model, could be used as free parameters which could be optimized in the least square
method.

4. Discussion

Once the physiological parameters of the runner are determined, the main interest of the model
is to predict how an improvement of a specific parameter through training will change the race
and final time and to quantify the improvement with respect to the intended gain. The pacing
strategy is indeed an important topic of research [15, 16, 5, 14].

Thanks to our model, the optimal pacing strategy can be computed on any distance for any
runner. For 800m, the velocity curve provides a strong acceleration, followed by a slowing down,
and a speed up again. Thus the first lap is indeed run quicker than the second one. For longer
races, the beginning and end of the race are significantly faster than the middle part, due to
the velocity peaks at the beginning and end of the race, with an almost even pace in the middle
part. This confirms the finding of [15, 16].

In the next figures, we vary by around 20% the different parameters σ, e0, fmax and τ to see
the effect on the race. The reference parameters are that of Runner A.

4.1. Variation in the maximal oxygen uptake

As we had mentioned before, σ is related to V̇ O2 by a factor 3, so varying σ between 18.5 and
25.5 amounts to varying V̇ O2 between 55 and 76. We keep all the other parameters fixed, impose
a time to run and plot the velocity according to the distance in Figure 4.1. The runner with
higher V̇ O2 is the one who runs the longest. One can see that V̇ O2 has an impact on the mean
velocity during the race and the velocity at the final sprint. For a higher V̇ O2, the runner can
maintain a higher mean velocity, but also can maintain it much longer.

The beginning of the race is not affected by a higher σ.

4.2. Variation in the total anaerobic energy

A similar experiment is performed with a variation of the initial anaerobic energy e0 in Figure 4.2.
A higher energy implies a higher mean velocity. The energy has no impact on the beginning of
the race, and not much on the distance at which they speed up again at the end. The runner
with higher energy can put back a bigger force and higher velocity at the end of the race and
speed up for a longer time.
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Figure 3.1. Velocity w.r.t. time: Runner A

Figure 3.2. Velocity w.r.t. time: Runner B

4.3. Variation in the propulsive force

Concerning τ and fmax, we first recall that from the velocity equation, the peak velocity vpeak is
determined by vpeak = fmaxτ . So increasing the propulsive force fmax or decreasing the friction,
which is increasing τ leads to an increase on the peak velocity. In particular, increasing fmax
produces an increase of the peak velocity at the beginning and at the end of the race, without
modifying the middle part of the race. Indeed, in the middle part of the race, the force is at an
intermediate value less than fmax. Increasing τ also has an impact on the middle part because
as we have seen, τ has an impact on the energy consumed in the middle part of the race.

What seems significant is to keep the peak velocity fixed, which means varying both τ and
fmax but keeping the product constant, as illustrated in Figure 4.3. A smaller τ implies a lower
mean velocity along the race, and it is more difficult to put back a high velocity at the end of
the race. A bigger τ means that vpeak can be maintained longer.

In order to increase the power output at the end of the race, one has to increase the anaerobic
energy or the propulsive force.
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Figure 3.3. Velocity w.r.t. time: Runner C

Figure 3.4. Velocity w.r.t. time: Runner D

5. Conclusion

Given a fixed distance to run, the model of [1] encompasses the optimal control of anaerobic
energy, oxygen uptake, propulsive force and velocity to produce the computation of the best
pacing strategy and time performance. The difficulty for practical applications is to identify the
parameters. This includes the oxygen uptake curve provided by [5] according to the distance,
and four physiological constants: the maximal oxygen uptake, the maximal available propulsive
force, the available anaerobic energy and a friction factor, also related to the economy of a
runner. Given time splits measurements on an 80m and a 1600m race, we introduce a protocol
to identify these parameters. The 80m race is used to get rough estimates for τ and fmax. Then
more precise values of the parameters are obtained thanks to the time splits for the 1600m race
using a least square method. An approximate value of V̇ O2max is required.

This allows us to produce the optimal pacing curve for any distance and predict the possible
improvements of a runner according to possible improvements of his physiology. The findings
are consistent with the literature, and in particular [15, 16, 5, 14]. This model could potentially
be useful for the training of athletes to analyze better their weaknesses and possibilities of
performance improvements.
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