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Abstract

The intracranial pressure (ICP) is an important factor in the proper functioning of the brain. This
pressure is needed to be constantly regulated, since an abnormal elevation can be quite dangerous. In this
article, we develop some numerical tools to better understand the regulation of this pressure. In particular,
as it is impossible to measure the ICP in a non-invasive way, these numerical tools can allow to estimate
values of the ICP. In addition, we propose to compute the dynamics of the cerebrospinal fluid (CSF), taking
into account the connected environment of the skull and the arterio-venous flows. A computational fluid
dynamics model in two dimensions is developed for the cerebrospinal fluid system, with Windkessel type
boundary conditions. This model shows that the dynamics can impact the distribution of the CSF in the
different compartments of the cerebrospinal system.

1. Introduction

The intracranial pressure (ICP) is an important clinical parameter for the proper functioning
of the brain. The ICP is the pressure in the water-like fluid, mainly composed of water (99% of
water and 1% of proteins, glucose, minerals), that is in and around the brain, namely the cere-
brospinal fluid (CSF). This pressure results from the interaction between the brain parenchyma,
the venous, the arterial and the CSF volumes inside the skull, assumed incompressible.

The cerebrospinal system is composed of the cerebral ventricles, the cerebral subarachnoid
spaces (SAS) and the spinal SAS: all of these compartments contain CSF and are connected, see
Fig. 1.1. Cerebral ventricles and SAS are connected by a tiny tube, called the aqueduct of Sylvius.
All of these compartments have their own elasticity, called compliance. The CSF oscillates in
the system, between the cerebral and the spinal compartments, at a frequency related to the
cardiac pulse and thus to the blood flow entering and exiting the brain [4, 3].

The volume and distribution of CSF in the central nervous system is involved in many patholo-
gies inducing ICP alterations. Non-communicating hydrocephalus is the most viewable by imag-
ing techniques and well known of these pathologies: it is characterized by a large increase of the
cerebral ventricles [15] and can also induce significant redistribution of CSF pulsations within
the SAS to the ventricular system [3, 24]. First studies on the global cerebrospinal system were
carried out mainly to understand the behavior of these obstructive pathologies. CSF alterations
as hydrocephalus are directly related to unbalance between CSF production and resorption in
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(a) Morphological MRI (b) Colored MRI

Figure 1.1. (a). Morphological MRI of the cerebrospinal system. (b). Schematic
representation of cerebral ventricles (green), cerebral SAS (red) and spinal SAS
(blue).

a global static approach of the cerebrospinal system. Part of hydrocephalus origin is well iden-
tified as complete obstruction of the aqueduct of Sylvius or partial obstruction of the SAS, due
to subarachnoid hemorrhage or meningitis. However, part of physiopathology of hydrocephalus
patients is still not understood [15]: indeed some idiopathic hydrocephalus cases are reported
where no obstruction is seen.

As the intracranial pressure is difficult to measure in a non-invasive way and as its regulation
is quite hard to understand, we first build a simplified numerical model in order to understand
the dynamics of the CSF, its impact on the ICP and on the cerebral blood flow. We also aim
to identify the parameters that govern the dynamic: frequency or amplitude of the blood flow
entering the brain, for instance.

1.1. State of the art

Electrical modeling. Historically, electrical modeling of the ICP has been proposed that
uses an electrical/mechanical analogy in a static approach (or at equilibrium) of the global
cerebrospinal system. The first and most popular studies on the ICP have been proposed by
Marmarou et al. [16, 17]. These studies considered a global static approach of the cerebrospinal
system and used an electrical modeling to describe the secretion/absorption process of the CSF,
see Fig. 1.2. The formation site corresponds to the choroid plexus in the ventricles, the absorption
site corresponds to the arachnoid granulations and the storage site to the global elasticity of
the system, which represents its capacity to increase (respectively decrease) its volume with an
increase (respectively decrease) of the pressure. This process controls the ICP in a long-term.
Some relations between ICP and CSF volume have been established:

ICP (t) = P0.e
E.V (t) (1.1)

where P0, E and V are respectively the initial pressure, the cerebrospinal system elastance and
the difference between the initial CSF volume and the overage CSF volume, during an injection
test, for example.
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Figure 1.2. Representation of the electrical model of Marmarou’s studies. C is
the intracranial compliance, R the absorption resistance.

Others studies using electrical modeling have been carried out, as the study proposed by
Ursino et al. [25], where a global representation of the cerebrospinal system including the sur-
rounding arterial and venous network was developed, to understand the auto-regulation of the
intracranial pressure. Inter alia, simulation of injection test were made for different parameters,
in order to validate the model and study ICP response.

Electrical models have the benefits to be fast; however accuracy is poor and they involve many
parameters that are difficult to measure or estimate.

Mechanical modeling. A physiological phantom has been realized [5], to reproduce inter-
actions between arterio-venous pulse and CSF pulse, using mechanical devices as pumps, see a
scheme in Fig. 1.3. This phantom has shown that CSF is driven by arterio-venous pulses and
that ICP depends on the system parameters. The difficulty to modify the parameters in this
phantom, other than the pump frequency, is a limit to this study. Numerical simulations can
allow to obtain some complementary information.

Figure 1.3. Representation of the Bouzerar’s phantom [5].

Numerical modeling. Numerical modeling came with the improvement of computer re-
sources. It uses physics-based equations, time-dependent or not, and simplified or realistic ge-
ometries.

Only few approaches devoted to the cerebrospinal system have studied the influence of CSF
dynamics in the repartition of the CSF between the two main intracranial compartments: the
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Table 1.1. CSF parameters.

Parameter Value Unity
Density ρ 10−3 g.mm−3

Viscosity µ 10−3 Pa.s

cerebral ventricular compartment at the center of the brain and the cerebral SAS surrounding
the parenchyma. These two compartments are directly connected to the third CSF compartment:
the spinal canal, outside the brain, which gives compliance to the cranium during the systolic
vascular cerebral expansion at each cardiac cycle [12].

Recent studies have been proposed with 2D or 3D models using the finite element method, for
instance the one developed by Alperin et al. [2]. It used a schematic representation of the spinal
cord to model the CSF flow in the spinal SAS. This study used a physics-based fluid equation,
namely the time-dependent Stokes equation and the output of the spinal SAS was considered
as a free output.

Other studies used porous media to model the entire cerebral compartments: cerebral ven-
tricles, cerebral SAS and the brain, like in Linninger et al. study [14] where numerical velocity,
obtained using the time-dependent Navier-Stokes equations and a Darcy’s law, was compared
to MRI measurements to look for a clinical indication.

1.2. Our numerical model

Numerical simulations allow better accuracy, by taking advantage of the use of physics-based
equations; however they require high computer resources and the simulation time is often long,
especially for fluid-structure interaction computation. In this study, we use a simulation con-
taining 2D models with physics-based equations, namely the time-dependent Stokes equations,
and some electrical models for the boundary conditions: the Windkessel models. This technique
allows us to have simulation results in a reasonable time.

In the sequel, the CSF is modeled as an incompressible fluid following the time-dependent
Stokes equations Eq. (2.1). Indeed, fluid parameters of the CSF (at 37◦C) are used, see Tab. 1.1,
and the system is in coated position, so we neglect gravity in a first approach.

As the real geometry is quite complex, and in order to understand the dynamics between
the different compartments, we first model the cerebrospinal system by a 2D bifurcation that
takes into account the three main compartments of the cerebrospinal system: cerebral ventricles,
cerebral SAS and spinal SAS in the confined environment of the skull, see Fig. 1.4. Arterial pulse,
that brings blood to the brain at each cardiac cycles, increases the total volume contained in
the rigid skull. It then forces CSF to exit the brain and though the pressure increases. Thanks
to this first simplified model, we aim to better understand the CSF distribution in the different
compartments and its impact on the ICP.

In blood flow simulations, as only a part of the network is considered, it is necessary to
impose artificial boundary conditions to model the remaining network. These artificial boundary
conditions are classically defined by considering an analogy with an electrical model [26], which is
called the Windkessel model [23], see Tab. 1.2. In this article, we will consider such a Windkessel
model to take into account interactions between cerebral ventricles and cerebral SAS in the
confined environment of the skull and the impact of blood flow entering the brain.

12
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Ventricles Cerebral SAS

Spinal SAS

Figure 1.4. Modeling of the cerebrospinal system.

Table 1.2. Electrical/mechanical analogy.

Electrical Mechanical
Current i Flow rate Q

Voltage U Pressure p

Resistance R Resistance R

Capacity C Compliance C

2. The Stokes equations and boundary conditions

2.1. The Stokes equations

The fluid simulation is performed by solving the time-dependent incompressible Stokes equations
Eq. (2.1) using the finite element method.

ρ
∂u
∂t

+∇p− µ∆u = f in [0, T ]× Ω (2.1a)

div(u) = 0 in [0, T ]× Ω (2.1b)
u = uD on [0, T ]× ΓD (2.1c)

µ
∂u
∂n − pn = gN on [0, T ]× ΓN (2.1d)

u|t=0 = u0 in {0} × Ω (2.1e)

Variable u is the velocity vector and p the pressure, ρ is the density, µ the dynamic viscosity of
the fluid and f an external force taken here equal to zero (gravity is neglected in a first approach).
The two-dimensional domain Ω, modeling the geometry of the bifurcation, has a boundary ∂Ω
split in ΓD and ΓN , where we impose respectively uD (Dirichlet boundary condition) and gN

(Neumann boundary condition) and T the final time of the study. The initial condition on the
velocity is called u0. Dirichlet conditions are imposed on the inlet (spinal SAS) and on the wall,
Neumann conditions are imposed on the outlets (cerebral ventricles and cerebral SAS).

We solve the Stokes equations using the finite element method with the open-source software
FreeFem++ [13]. The difficulty for solving the Stokes equations is the zero divergence condition
Eq. (2.1b). We consider here a classical algorithm [20]: the zero divergence condition involves a
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Blood

CVentricles CCerebral SAS

PBrain

Figure 2.1. CSF Windkessel Model. The cerebrospinal system is modeled by
a bifurcation with two deformable compartments: cerebral ventricles and cerebral
SAS. These compartments interact each other and equally with the cerebral
blood.

mixed weak form that can be managed by choosing compatible spaces for the velocity and the
pressure, respecting the so-called inf-sup condition. To speed-up the resolution, this method is
coupled with an iterative Uzawa Conjugate Gradient algorithm [22] with a Cahouet-Chabart
preconditionner [6].

2.2. Boundary conditions

The different interactions considered in the cerebrospinal system are shown on Fig. 2.1.
In our model, spinal SAS is considered as an input, cerebral SAS and cerebral ventricles are

considered as outputs, walls are considered as a non-slip boundary.
Spinal SAS and wall conditions are imposed using a Dirichlet boundary condition, so the

boundary ΓD is split into Γin and Γwall. On Γin, we impose the velocity profile uin computed
from phase contrast MRI (PC-MRI) data obtained in the BioFlowImage laboratory [19]. On
Γwall a null velocity is imposed.

Cerebral SAS and cerebral ventricles conditions are imposed using a Neumann boundary
condition: so the boundary ΓN is split into ΓSAS and ΓV ent. On each of these boundaries, a
Windkessel model is imposed, i.e. a tensor containing the pressure (PSAS and PV ent). As cere-
bral SAS and cerebral ventricles are deformable compartments, they are modeled by capacities
(or compliances). Considering the electrical/mechanical analogy in Tab. 1.2, the Windkessel’s
pressure is a function of capacity and flow during time in the following way:

PSAS(t) = 1
CSAS(t)

∫ t

0
QSAS(s)ds, (2.2)
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PV ent(t) = 1
CV ent(t)

∫ t

0
QV ent(s)ds, (2.3)

where QSAS(t) and QV ent(t) are respectively cerebral SAS and cerebral ventricles flows.
To take into account the confined environment and the arterio-venous volume, we consider

the brain pressure PBrain(t) as a function of the volumes in the expression of compliances:

CV ent(t) = C0
V ent

PBrain(t) with C0
V ent ∈ R, (2.4)

CSAS(t) = C0
SAS

PBrain(t) with C0
SAS ∈ R. (2.5)

In a first approach, we consider the brain pressure PBrain(t) = P0e
kV (t), with P0, k ∈ R and

V (t) = VV ent(t) + VSAS(t) + VBlood(t), as in Marmarou’s static study of the cerebrospinal sys-
tem [17]. The volumes VV ent and VSAS are cerebral ventricles and cerebral SAS volumes respec-
tively, and VBlood is the arterio-venous volume computed from PC-MRI data that were obtained
in the BioFlowImage laboratory.

2.3. Weak form and discretization

In order to present the computational approach, we introduce the functional spaces for the
velocity and the pressure:

V 0 =
{

v ∈
(
H1(Ω)

)2
,v|ΓD

= 0
}

V D =
{

v ∈
(
H1(Ω)

)2
,v|ΓD

= uD

}
V 0

t = L2
(
[0, T ];V 0

)
V D

t = L2
(
[0, T ];V D

)
Q = L2(Ω)
Qt = L2 ([0, T ];Q)

(2.6a)

The semi-discrete variational formulation needed for the finite element method is the following:
find (u, p) ∈ V D

t ×Qt such that for all (v, q) ∈ V 0
t ×Qt:

ρ

∫
Ω

∂u
∂t
.v +

∫
Ω
∇p.v− µ

∫
Ω

∆u.v =
∫

Ω
f .v +

∫
ΓN

gN .v (2.7a)∫
Ω

div(u)q = 0 (2.7b)

with:

gN =


(

1
CV ent(t)

∫ t
0 u.nds

)
n on ΓVent(

1
CSAS(t)

∫ t
0 u.nds

)
n on ΓSAS

(2.8)
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Let T be a triangulation of the domain Ω, and h the maximum of the diameters of the triangles
of T . We introduce the finite-dimensional spaces V D

t,h, V 0
t,h and Qt,h:

V 0
h =

{
vh ∈

(
H1(Ωh)

)2
,v|ΓD

= 0,∀K ∈ T ,vh|K ∈ P2(K)
}
⊂ V 0

V 0
t,h = L2

(
[0, T ];V 0

h

)
V D

h =
{

vh ∈
(
H1(Ωh)

)2
,v|ΓD

= uD,∀K ∈ T ,vh|K ∈ P2(K)
}

V D
t,h = L2

(
[0, T ];V D

h

)
Qh =

{
q ∈ L2(Ωh), ∀K ∈ T , qh|K ∈ P1(K)

}
⊂ Q

Qt,h = L2 ([0, T ];Qh)

where P1(K) (resp. P2(K)) is the space of polynomials of degree less than or equal to 1 (resp.
2) in each triangle of T . The discretization spaces are chosen compatible – in the sense of the
so-called inf-sup condition – to cope with the divergence constraint [20, Chapter 15].

We denote by un
h and pn

h, respectively, the velocity and pressure approximations at the time
n∆t, with ∆t the time step.

The fully discrete problem then reads: find un+1
h ∈ V D

t,h and pn+1
h ∈ Qt,h such that ∀vh ∈ V 0

t,h,
qh ∈ Qt,h:

ρ

∆t

∫
Ω

un+1
h .vh −

ρ

∆t

∫
Ω

un
h.vh +

∫
Ω
pn+1

h div(vh)− µ
∫

Ω
∇un+1

h .∇vh

=
∫

Ω
fn+1.vh +

∫
ΓN

gn+1
N .vh (2.10a)∫

Ω
div(un+1

h )qh = 0 (2.10b)

An explicit scheme is chosen to compute the Neumann condition, gn+1
N :

gn+1
N =


(

1
Cn

V ent

∑n
i=0 ∆tui.n

)
n on ΓVent(

1
Cn

SAS

∑n
i=0 ∆tui.n

)
n on ΓSAS

(2.11)

Remark 2.1. An implicit scheme can be chosen to compute the Neumann condition, but for sake
of clarity, we only detail the explicit choice.

2.4. Stability

As far as we know, we have to prove the stability of the numerical scheme, as results already
proved do not take into account non-homogeneous Dirichlet condition [9]. So we need to prove
that our scheme is stable (in the sense that the kinetic energy decreases) with a non-homogeneous
conditions on the input and Neumann conditions using only a variable C lumped model for the
outputs. The stability analysis reveals a final time dependence (inverse of T ) in the explicit
coupling case that is not really representative of an optimal Courant-Friedrichs-Lewy (CFL)
condition, [10]. Then, a numerical analysis of the stability reveals a non-binding CFL condition
for our applications [10]. Moreover, as we use the characteristics method, no instabilities have
been observed in our applications.

Remark 2.2. As mentioned above, the CFL condition is not too restrictive on the time step, so
there is no need of implementing an implicit scheme for the Neumann condition.
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Figure 2.2. Example of pressure measurements during an injection test. Injec-
tion takes place during the Up period, when pressure rises.

Table 3.1. Simulation parameters, validation.

Parameter Value

QSpinalSAS 1− 5.0 mm3.s−1

ω 0.1− 5.0 Hz
C0

SAS 1 mm3.Pa−1

C0
V ent 0.1− 5.0 mm3.Pa−1

P0 1 Pa
k 0.05

2.5. Parameters estimation

We need to fix the compliance values in the cerebral SAS and cerebral ventricles. A way to
determine these compliances is to process an injection test and a flow MRI.

An injection test is a measurement of the intracranial pressure during a constant rate infusion
of fluid into the SAS (cerebral or spinal) or into the cerebral ventricles. An example of pressure
measurements during an injection test, with a constant rate infusion of 1 mL/min is shown in
Fig. 2.2. The flow MRI (or PC-MRI) measurements allow for the calculation of the intracranial
volume change (IVC), that is the sum of arterial, venous and CSF flows at the C2–C3 level
(between the second and the third cervical vertebrae) integrated in time (arteries: internal
carotid, vertebral; veins: internal jugular, posterior plexus, epidural; CSF: spinal SAS). The
compliance value of the entire intracranial system is calculated using the following relation:

C = ∆IV C
∆ICP , (2.12)

where ∆X means max (X)−min (X).
This global compliance has to be divided into three compliances: the cerebral ventricles, the

cerebral SAS and the spinal SAS compliances.

3. Numerical results

The computed values of the Reynolds and the Strouhal numbers enforce the use of the unsteady
Stokes equations, neglecting the nonlinear part. Nevertheless, all simulations have been run by
solving the complete Navier-Stokes equations, but no noticeable differences were found.

3.1. Validation and impact of the input parameters

First, we want to confirm the choice of the Windkessel model. Without taking any output
boundary conditions, so using free outputs, the flow distribution remains the same independently

17



S. Garnotel, S. Salmon, et al.

0 1 2 3 4 5

0.2

0.4

0.6

0.8

C0
V ent (mm3.Pa−1)

F
lo
w

(m
m

3
.s
−
1
)

Cerebral SAS
Ventricles

Figure 3.1. QSAS and QV ent function of C0
V ent.

of the input values, with approximately 10% of the flow for the cerebral ventricles, and 90% for
the cerebral SAS, as expected, see for example Fig. 3.3. This test confirms the necessity of using
such Windkessel type boundary conditions to observe an impact of the input values.
Then, a constant flow is imposed at the spinal SAS with parameters taken from Tab. 3.1. The
cerebral ventricles compliance value varies in [0.1, 5.0], the flow frequency is taken equal to 1.
The flow curves of cerebral SAS and cerebral ventricles are plotted in function of the cerebral
ventricles compliance value, see Fig. 3.1. We observe that the value of the compliance has a real
impact on the flow distribution: higher the cerebral ventricles compliance, higher the cerebral
ventricles flow, and lower the cerebral SAS flow (according to mass conservation), which is the
expected behavior.
A second experiment is carried out by imposing a pulsatile flow at the spinal SAS with parameters
of Tab. 3.1 and ωSpinal SAS = 1, C0

V ent = 2; the input flow amplitude varies in [1, 50]. The
normalized maximum flow values of cerebral SAS and cerebral ventricles are plotted in function
of the amplitude, see Fig. 3.2. We observe that amplitude has an impact on the CSF distribution
using the variable compliances only; in the constant compliance case, no impact is seen.
A third experiment is carried out by imposing a pulsatile flow at the spinal SAS with parameters
of Tab. 3.1 and QSpinal SAS = 1, C0

V ent = 2; the input flow frequency varies in [0.1, 5.0] and the
normalized maximum flow values of cerebral SAS and cerebral ventricles are plotted in function
of the heart rate, see Fig. 3.3. We observe that the heart rate has also an impact on the flow
distribution: low heart rate favors cerebral ventricles while high heart rate favors cerebral SAS.
Constant and variable compliances present similar results, with a small phase shift.

Based on these experiments, we have seen that both frequency and amplitude of the cardiac
cycle can influence the distribution of the CSF flow in the cerebral ventricles and SAS compart-
ments. This behavior can not be confirmed in clinical studies, as the system is adapted all along
life, and we will not be able to see if a compartment is preferred in this case. On the other hand,
to see this effect, we should accelerate or slow down heart rate of people during the examination,
which is not possible for ethical reasons.

3.2. Pathological case

To confirm that our approach is relevant, we want to verify that if the inputs are given, outputs
are close to measurements. In this section, all the parameters are set from MRI acquisition [4]
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and injection test. From morphological MRI, we compute the ratio of volume contained in the
cerebral ventricles to the volume contained in the cerebral SAS, and we build the mesh geometry
using measurements made with MIPAV software [18], see Fig. 3.4.

The CSF flow curve at the C2–C3 level, see Fig. 3.5(a), imposed at the input and the arterio-
venous volume (arterial minus venous volumes), see Fig. 3.5(b), needed in the Windkessel bound-
ary conditions are obtained from PC-MRI.

Remark 3.1. The computed values of the Reynolds number and the Strouhal number are in this
case Re = 7.97 and St = 8.29 in the inlet pipe.

Compliance values are chosen to obtain a global compliance at rest of 1.42 mm3.Pa−1, which
is measured from injection test. This global compliance is divided into CV ent = 1/4 × 1.42
and CCerebral SAS = 3/4 × 1.42 to obtain a representative behavior (in terms of flow) of the
cerebrospinal system. The determination of local compliance values from global compliance
value is still an open problem. Initial pressure P0 is taken close to the physiological value of
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Figure 3.4. Pathological case. Resulting mesh using real geometry parameters.
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Figure 3.5. Pathological case. (a). Measured CSF flow at the C2–C3 level.
(b). Calculated arterio-venous volume from PC-MRI.

12 mmHg [8] and the k parameter is defined as k = 2.6/(C0
SAS+C0

V ent)
to obtain a representative

behavior in terms of pressure.
Flow and pressure are shown in Fig. 3.6 (a)-(b). Flow distribution is close to measured flow,

as expected, see Fig. 3.7 (a)-(b). Cerebral ventricles flow represents 25% of the spinal SAS flow
whereas cerebral SAS flow represents 75%. We can observe the phase shift between maximum
flow in the SAS and maximum flow in the ventricles, which is also an expected behavior. Pres-
sure curve is globally similar to the measured intracranial pressure curve, with an heart rate
synchronized pulse and a 2.8 mmHg pulse amplitude. However, it does not present peaks and
valleys as the one measured, see Fig. 3.7.

3.3. Healthy case

As previously, we want to confirm that outputs are reasonable. But in this section, an injection
test can not be done, considering morbidity of a surgical act on healthy people. Consequently,
we design the cerebral SAS and cerebral ventricles compliances to obtain a pressure amplitude
between 1 mmHg and 3 mmHg, that corresponds to physiological values [21, 1].

Cerebral ventricles compliance is taken equal to CV ent = 1/20 × 4 and the cerebral SAS one
to CSAS = 19/20 × 4 in order to obtain the correct flow distribution. All other parameters are
the same as the pathological case.
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Figure 3.6. Pathological case. (a) Flow. (b) Pressure. All curves are plotted
during more than two cardiac cycles.
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Figure 3.7. Pathological case. (a) Comparison between measured flow and
computed flow (b) Comparison between measured pressure and computed pres-
sure.

Remark 3.2. The computed values of the Reynolds number and the Strouhal number are in this
case Re = 23.21 and St = 4.10 in the inlet pipe.

Flow and pressure are shown in Fig. 3.9 (a)-(b). Flow curve corresponds to physiological
behavior, pressure curve has also a physiological amplitude, see Fig. 3.10. Again, phase shift
between SAS maximum flow and ventricles maximum flow is observed. But pressure curve does
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Figure 3.8. Healthy case. Resulting mesh using real geometry parameters.
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Figure 3.9. Healthy case. (a) Flow. (b) Pressure. All curves are plotted
during more than two cardiac cycles.

not present peaks and valleys as observed in clinical studies for healthy cases, see Fig. 3.11.
We can also observe that flow distribution is different in the pathological and healthy case:
ventricles flow is higher in the pathological case and SAS flow is smoother in the pathological
case. The main noticeable difference between both cases is the value of the global compliance,
which is almost four times bigger in the healthy case. It suggests that, for this patient, a loss
of compliance of the system is at the origin of the alteration of the CSF dynamics. Moreover,
the compliance should be distributed differently in pathological and healthy case to retrieve the
expected flow curve. Ventricles have a proportionally bigger compliance in the pathological case.
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Figure 3.10. Healthy case. Comparison between measured flow and com-
puted flow.

Figure 3.11. Healthy case. Healthy pressure curve form, Cardoso clinical study [7].

Remark 3.3. Differences between pathological and healthy cases are not due to the geometry
differences. As the Windkessel models are imposed at the outlets (ventricles and cerebral SAS),
geometry has little impact contrarywise to the free output case.

4. Conclusion

A computational model for the cerebrospinal system in a simplified geometry was presented,
taking into account the rapid dynamics of the CSF synchronized on the cardiac pulse. The equa-
tions solved are the Stokes equations with non-standard boundary conditions, in a bifurcation
representative of the different compartments containing the CSF. The non-standard boundary
conditions allows to model the confined environment and the arterio-venous volume by using
compliances.

The validation of the model is carried out for constant and pulsatile flows. As expected, we
have also proved that the rapid dynamics of the CSF can have an impact on the distribution of the
fluid in the cerebral ventricles and the SAS. Results of this simplified model with physiological
data are in accordance with the physiological behavior of the cerebrospinal system (which is
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not the case for a simulation without the Windkessel model). Results equally highlight a large
difference of elasticity (and its distribution between compartments) between an healthy and
a pathological case, that may be a possible cause of idiopathic hydrocephalus development.
This conclusion should be confirmed by some more tests on data available in the BioFlowimage
laboratory.

However, the parameters, as the compliance appearing in the lumped model parameters,
remain difficult to determine. The compliance values setting need to be improved in order to
avoid an injection test, which is an invasive measurement of the ICP. Moreover, the compliance
calculated with an injection test is global: it should be divided to obtain cerebral SAS and
cerebral ventricles compliance, which is done by tuning the value, in order to obtain a good
concordance with the flow curve for the moment. MR elastography could provide an efficient way
to better estimate these parameters. Moreover, the numerical pressure curves are not satisfactory,
this is clearly a limitation of our approach. In a further study, the numerical model will be
improved to remove the compliance estimation problem ([10], [11]).
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