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Abstract

Determinantal point processes (DPPs) are popular tools that supply useful information for repulsiveness.
They provide coherent probabilistic models when negative correlations arise and also represent new algo-
rithms for inference problems like sampling, marginalization and conditioning. Recently, DPPs have played
an increasingly important role in machine learning and statistics, since they are used for diverse subset se-
lection problems. In this paper we use k-DPP, a conditional DPP that models only sets of cardinality k,
to sample a diverse subset of species from a large phylogenetic tree. The tree sampling task is important
in many studies in modern bioinformatics. The results show a fast mixing sampler for k-DPP, for which a
polynomial bound on the mixing time is given. This approach is applied to a real-world dataset of species,
and we observe that leaves joined by a higher subtree are more likely to appear.

1. Introduction

A rooted phylogenetic tree is an oriented graph that depicts the evolutionary relationships
amongst a set of species. The root of the tree represents the last common ancestor of all species of
the set, the leaves of the tree correspond to the species, and an internal node represents the most
recent common ancestor of all species descending from that node. Leaves and nodes are called
taxons, and the subtree starting at a given node is called a clade. Currently, phylogenetic trees
are generally built based on the complete genome or part of the DNA sequence of the species.
As next-generation sequencing technologies become more and more efficient and cheap, the
number of available DNA sequences or complete genomes has grown exponentially (NCBI https:
//www.ncbi.nlm.nih.gov/genbank/statistics/, GOLD, Genome OnLine Database, https:
//gold.jgi.doe.gov/statistics). As of August 2020, there are more than 240 000 complete
sequenced genomes in public databases, without taking into account subspecies or strains (for
example, there are 100 genomes of subspecies and strains of “Saccharomyces cerevisiae”, the
baker’s yeast). Many studies in modern bioinformatics, including comparative genomics, multiple
sequence alignment, etc., are based on a small subset of the partially or completely available
sequenced species. The size of the subset is restricted (from hundreds to thousands of speciess)

Keywords: Determinantal point process, Kernel, Markov chain, Metropolis-Hasting, Mixing time, Phylogenetic
tree.
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either because these studies require human intervention or because of the computational time
required to process the data. The choice of the species subset is crucial, as it should reflect the
diversity within the tree they are taken from, and so minimize the redundancy resulting from
the selection of very closely related species. The goal of the method presented here is to sample
a phylogenetic tree in an efficient and relevant way.

Determinantal point processes (DPPs), which arise in random matrix theory ([16], [7]) and in
quantum physics, were first identified by Machhi [15] who called them fermion processes. They
are probabilistic models that capture negative correlation and give the likelihood of selecting a
subset of items as the determinant of a kernel matrix. Kulesza and Taskar [13] provide a gentle
introduction to DPPs and show that they offer appealing properties and practical algorithms,
focusing on the extensions that are the most relevant to the machine learning community. For
instance, DPPs can be used to select diverse sets of sentences to form document summaries, or
to find multiple non-overlapping human poses in an image (see [13]).

For an integer 0 ≤ k ≤ n, conditioning on sampling sets of fixed cardinality k, one obtains
a k-DPP. The simplest example is described by Kulesza and Taskar [12] on a real world image
search problem, where the goal is to show users diverse sets of images that correspond to their
query. For more information about k-DPP and their applications, we refer to recent studies by
Deshpande and Rademacher [5] and Kulesza and Taskar [13].

The main idea here is to sample, according to k-DPP, a diverse set of species in a very large
phylogenetic tree containing millions of nodes. To define a k-DPP, a positive semi-definite kernel
is needed. This kernel plays the main role in expressing the degree of similarity between any
two nodes x and x′ with fine distinctions in the degree to which x and x′ are distant from each
other in the tree. As mentioned above, the leaves are connected to each other through ancestors.
Therefore, in this paper we chose to use a specific kernel, namely the intersection kernel that
compares the ancestors of one leaf with the ancestors of another one.

Different algorithms have been presented for sampling from k-DPP, but these algorithms
commonly need the eigen-decomposition of a matrix which typically has a size of more than
one million ([18]). Thus, they are inefficient in time and memory (see Mehta and Gaudin [10],
Deshpande and Rademacher [5], and Kulesza and Taskar [12]). In contrast, Markov chain tech-
niques are very appealing in the context of generating random samples of a k-DPP, due to
their simplicity and efficiency. For example, Kang [9] considered a Markov Chain Monte Carlo
(MCMC) generated by the Metropolis-Hastings algorithm to sample. In his work, the coupling
argument is not well defined, hence the proof of the rapid mixing time of the Markov chain is
wrong, but the sampling scheme is correct. Borcea et al. [2] show that any DPP is a Strongly
Rayleigh (SR) distribution. Such distributions are defined by strong negative dependence prop-
erties. Since SR distributions are amenable to efficient Markov chain sampling, Anari et al. [1]
used a lazy MCMC, described also by Kang [9], and showed that the natural MCMC algorithm
mixes rapidly in the support of a homogeneous SR distribution. Since DPPs are considered
special cases of SR distributions that are closed under truncation, then any k-DPP is a ho-
mogeneous SR distribution. Their result implies that the same Markov Chain can be used to
efficiently generate random samples of a k-DPP.

This paper aims to show the performance of k-DPP in selecting a subset of species to represent
a much larger set of species in a polynomial time and illustrate the convergence speed result of
Anari et al. [1] by making it explicit in this particular case.

The remainder of this paper is organized as follows. Section 2 presents some basic facts about
DPPs, kernel functions and our k-DPP kernel. Our main result is presented in Section 3. It
states that if a tree is of maximum height h, for 0 < h2 < h1 < h/2, choosing k species joined
by a subtree of height h1 is much more probable than choosing k species joined by a subtree
of height h2. Then, we focus on the mixing time of the Markov chain specified in Algorithm 1
for the k-DPP. The resulting mixing time depends on the height of the phylogenetic tree. In
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Section 4, we apply our approach to a real case involving a large dataset of species. Finally,
Section 5 presents our conclusions.

2. Background

2.1. k-Determinantal Point Processes

For a discrete set X , a DPP is defined via an L-ensemble, by using a symmetric and positive
semidefinite matrix L that directly defines the probability of observing each subset of the set X .
In this paper, we will work with the most relevant construction of k-DPPs based on L-ensembles.

Figure 2.1. A set of points in the plane drawn from a DPP (left), and the same
number of points sampled independently using a Poisson process (right).

For a discrete set X = {1, 2, . . . , n} of n items, a DPP, denoted PL, is a probability distribution
on the set 2[n] of all subsets of [n] = {1, 2, . . . , n} defined by a n×n positive semidefinite matrix
L indexed by the elements of X such that if X is a random subset drawn according to PL, we
have

PL(X) = det(LX)
det(L+ I) ,

where I is the n × n identity matrix and LX is the principal submatrix of L indexed by the
elements of X

(
LX = (Lij)i,j∈X

)
. Note that PL is suitably normalized in view of the identity∑
X⊆X

det(LX) = det(L+ I).

DPP can model two distinct characteristics: the size of the set and its content. Kulesza and
Taskar [13] propose a solution to this problem. They introduced the k-DPP, a conditional DPP
that models only sets of cardinality k.

A k-DPP is a distribution over all subsets X ⊆ X with cardinality k. The L-ensemble con-
struction of a k-DPP, denoted PkL, gives the following probability to k-sets:

PkL(X) = det(LX)∑
|X′|=k det(LX′)

, (2.1)

where | · | denotes the cardinality of the set, |X| = k and L any positive semidefinite matrix.
Hereafter, we show how to choose the kernel.

2.2. DPP Kernel

To provide the similarity between nodes in the data X , a positive semidefinite kernel function
K : X × X → R is needed. Positive semidefiniteness means that for all sets of real coefficients
{fx}, we have ∑

x∈X

∑
x′∈X

fxfx′K(x, x′) ≥ 0.
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Then, for finite X , the kernel can be uniquely represented by a |X | × |X | matrix with rows
and columns indexed by the elements of X , and related to the kernel by Kxx′ = K(x, x′). This
matrix is called the Gram matrix of the kernel.

Different kernels have successfully been applied to capture the long-range relationships be-
tween pairs of points induced by the local structure of a graph. The Laplacian matrix has often
been effective for graph isomorphism problems in biochemistry and design of statistical experi-
ments, and plays an important role in the analysis of random walks and electrical networks on
graphs ([6], [4], and [17]). It is also known as the Kirchhoff matrix or the information matrix.
The Laplacian matrix of the graph is defined as L = D−A, where the elements of the adjacency
matrix A of the graph are:

Aij =
{

1 if i ∼ j
0 otherwise

and D = Diag(Ai), with Ai =
∑
j Aij . Then, the pseudoinverse L† of L is often used as a kernel

on a graph (or a tree) and can be interpreted as a similarity measure ([14]). In addition, L† can
be used to compute the average commute time (see Gobel and Jagers [8]), which is the average
number of steps taken by a random walker to reach node j and come back to node i when
starting from node i.

Let us mention the work of Kondor and Lafferty [11] on diffusion kernels, a class of exponential
kernels on graphs. They showed how these kernels correspond to standard Gaussian kernels in
a continuous limit. The kernel is given by the matrix exponential of L:

eβL = lim
s→∞

(
I + βL

s

)s
, s, β ∈ N

where the limit always exists and is equivalent to

eβL = I + βL+ β2

2! L
2 + β3

3! L
3 + · · · .

An important effect of defining kernels in such an exponential form is that any power of the
symmetric matrix is positive semidefinite.

Figure 2.2. A subtree of height 5.

In our case, we note that these two kernels are troublesome. Indeed, referring to the subtree
in Figure 2.2, F and G are two close species that are not far from the root. A and B are also
two close species, but with longer branches making them more distant from the root. With the
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two kernels we will have K(A,B) ≈ K(F,G), which is incorrect from a phylogenetical point of
view.

When considering two species A and B, it is important to take into account the fact that
they are connected to each other through ancestors. Between their joining point and the root,
there is a common number of ancestors. For this reason, a more interesting kernel is one that
compares the set of ancestors of species A with the set of ancestors of species B, denoted by EA
and EB respectively; hence the kernel is here defined as

K(A,B) = |EA ∩ EB|, (2.2)
where |EA ∩ EB| means the cardinality of the intersection of the two sets EA and EB. This
function is a positive semidefinite kernel because it can be written as a dot product of binary
vectors.

Thereby, the k-DPP kernel matrix LX with |X| = k is defined as LX = XTX where the
elements of the matrix XT are: ∀i ∈ {1, . . . , k}, ∀j ∈ {1, . . . , n} where n is the number of nodes
present in the tree,

XT
ij =

{
1 if j is an ancestor of i
0 otherwise.

We illustrate this by an example where k = 4 and n = 12. Let us take the subtree above in
Figure 2.2, by choosing X = {A,C,D,G}, the matrix XT is given as follows:

1 2 3 4 5 A B C D E F G
A
C
D
G


1 1 1 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0 1


and the kernel is equal to

LX =


5 3 2 1
3 4 2 1
2 2 3 1
1 1 1 3

 .
One might also consider the normalized kernel K̃ defined as follows:

K̃(A,B) = |EA ∩ EB|√
|EA||EB|

.

However with this normalization, we will face the same problem as with the first two kernels.
Consequently, our choice has been directed towards the intersection kernel (equation (2.2)).

3. Sampling via k-DPP

3.1. The k-DPP selects diverse subsets

The k-DPP is ideal for selecting a diverse subset of given items: when selecting one item, the
probability of simultaneously choosing a similar item is indeed low. In this section, we denote
by h the height of the phylogenetic tree from the deepest leaf to the root and n the number of
leaves (see figure below). For simplification purposes, we will consider a phylogenetic tree that
is a perfect r-ary tree of height h. The number of nodes at depth d is then equal to rd. For
0 < h2 < h1 < h/2, Proposition 3.1 shows that choosing k species simultaneously joined by a
subtree of height h1 (i.e., there are no leaves connected by a subtree of height h1 − 1) is much
more probable than choosing k species simultaneously joined by a subtree of height h2 (i.e.,
there are no leaves connected by a subtree of height h2 − 1). This demonstrates that k-DPP
allows to achieve diversity in the most probable samples.
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Figure 3.1. A part of a perfect 3-ary tree where the length of the longest path
from the root to a leaf is h = 5. The species A, B and C are joined by a subtree
of height h1 = 2 and X, Y and Z are joined by a subtree of height h2 = 1.

Proposition 3.1. For a positive integer r = k where k ≤ n, let us consider a r-ary tree T
of height h and let 0 < h2 < h1 < h/2. Then choosing k leaves simultaneously joined by a
subtree of height h1 is

(
h1
h2

)k
· 1+k

1+kh ·
kh−h1
kh−h2 ·

(
kh1−1

kh2−1

)k
times more probable than choosing k leaves

simultaneously joined by a subtree of height h2.

Proof. Let A be a set containing k leaves all joined initially by a subtree of height h1 and B a
set containing k leaves joined by a subtree of height h2. Between any two leaves in the set A
there are h− h1 common ancestors. Thus, the intersection kernel LA is given by:

LA =


h h− h1 . . . h− h1

h− h1
. . . . . . ...

... . . . . . . h− h1
h− h1 . . . h− h1 h

 .
Then, the determinant of LA can be rewritten as follows:

detLA =
∣∣(h− h1)11′ + h1Ik

∣∣
= hk1

∣∣∣∣Ik + h− h1
h1

11′
∣∣∣∣

= hk1

(
1 + h− h1

h1
1′1
)

by the matrix determinant lemma

= hk1

(
1 +

(
h

h1
− 1

)
k

)
.

Following this same reasoning for the set B that contains k leaves joined by a subtree of height
h2, between any two leaves there are h− h2 common ancestors. Then, we have

detLB = hk2

(
1 +

(
h

h2
− 1

)
k

)
.

The number of subtrees of height h1 (resp. h2), whose leaves are a subset of the leaves of T
and roots are nodes at height h1 (resp. h2) in T , is given by kh−h1 (resp. kh−h2). The number
of leaves that can be chosen from a subtree of height h1 (resp. h2) is given by kh1−1 (resp.
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kh2−1). Consequently, the probability ratio of choosing k leaves joined by a subtree of height h1
to choosing k leaves joined by a subtree of height h2 is expressed as:

detLA
detLB

· k
h−h1

kh−h2
·
(
kh1−1

kh2−1

)k
=
(
h1
h2

)k
·

1 + k
(
h
h1
− 1

)
1 + k

(
h
h2
− 1

) · kh−h1

kh−h2
·
(
kh1−1

kh2−1

)k

≥
(
h1
h2

)k
· 1 + k

1 + k(h− 1) ·
kh−h1

kh−h2
·
(
kh1−1

kh2−1

)k
as h2 < h1 < h/2

≥
(
h1
h2

)k
· 1 + k

1 + kh
· k

h−h1

kh−h2
·
(
kh1−1

kh2−1

)k
·

This concludes the proof. �

Now, we illustrate the results of this Proposition by considering the case of the perfect 3-ary
tree represented in Figure 3.1 where h = 5, h1 = 2 and h2 = 1. Then, according to Proposition 3.1
it is 18 times more likely to choose 3 leaves simultaneously joined by a subtree of height 2 than
by a subtree of height 1.

3.2. Convergence Theorem

In this section, we will study the convergence of the distribution of a Markov chain M to the
stationary distribution PkL. More precisely, the bound found by Anari et al. [1] will be made
explicit in the particular case we are dealing with. As a preliminary to the proof of the main
convergence theorem stated below, we need the following section.

3.2.1. Construct a Markov chain for sampling from PkL
For large datasets, it is inefficient to use Kulesza and Taskar’s k-DPP sampling algorithm [12],
since eigen-decomposition of L is needed. To solve this problem, Kang [9] and Anari et al. [1]
present an original method based on the Metropolis-Hastings algorithm. This method proposes
to define a Markov chainM with [n] as the state space such that at each step we stay at state
X ⊆ [n] with |X| = k with probability 1/2 and we propose to move to a new state according
to the transition probability q with probability 1/2. If the current state is X, a new proposal
state is drawn as follows: two elements u ∈ X and v /∈ X are chosen randomly where u is to be
removed from the current set X of size k, and v is to be added. Hence, the main idea behind
this method is to create a new configuration by selecting a row and column of LX and replace
them with the row and column corresponding to the element to be added.

Therefore, for X = Y ∪ {u}, the proposal state is X ′ = Y ∪ {v}, which is accepted with
probability

p = min
{

1,
detLX′ · q

(
X ′, X

)
detLX · q

(
X,X ′

) } .
By taking into consideration the fact that q is a symmetric transition probability, the transition
probability matrix PPk

L
ofM is given by:

PPk
L
(X,X ′) =

q(Y ∪ {u}, Y ∪ {v}
)
· 1

2 min
{

1, detLY ∪{v}
detLY ∪{u}

}
if u 6= v

1−
∑
w 6=u q

(
Y ∪ {u}, Y ∪ {w}

)
· 1

2 min
{

1, detLY ∪{w}
detLY ∪{u}

}
otherwise.

As PPk
L
(X,X) ≥ 1

2 for all X, then the Markov chain described above is said to be a lazy chain.
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For large X, a single iteration may become very costly. Observing that LY ∪{u} can be repre-
sented as the following block matrix:

LY ∪{u} =
(
LY bu
bTu cu

)
,

where bu = L(i, u)i∈Y ∈ R|Y | and cu = L(u, u), Kang [9] rewrites the determinant of LY ∪{u} as

det(LY ∪{u}) = det(LY )(cu − bTuL−1
Y bu).

As q is a symmetric transition probability, this allows us to formulate the acceptance probability
as

p = min
{

1, det(LX′)
det(LX)

}
= min

{
1, cv − b

T
v L
−1
Y bv

cu − bTuL−1
Y bu

}
.

Thus, the lazy Markov chain M produced by the Metropolis-Hastings algorithm is defined to
obtain a sample from k-DPP. This procedure is outlined in the following algorithm.

Algorithm 1 Markov chain for sampling from PkL [[9], [1]]
Require: Item set S = [n], similarity matrix L � 0
Randomly initialize state X ⊆ S, s.t. |X| = k
Sample w ∼ Unif(0, 1)
if w < 1

2 then
X ← X

else
while not mixed do
Sample u ∈ X, and v /∈ X u.a.r.
Letting Y = X \ {u}, set

p← min
{

1, cv − bv
TL−1

Y bv

cu − bTuL−1
Y bu

}
.

X ← Y ∪ {v} with prob. p
X ← X with prob. 1− p

end while
end if
return X

The essential idea of this algorithm is to obtain a rapidly-mixing Markov chain which has PkL
as its stationary distribution.

3.2.2. Notations and Preliminaries

Definition 3.2. The total variation distance between two probability distributions ν and µ on
a finite space Ω is:

‖µ− ν‖TV = 1
2
∑
x∈Ω
|µ(x)− ν(x)|.

If Y is a random variable that samples according to µ and ‖µ− ν‖TV ≤ ε, then we say Y is an
ε-approximate sample of ν.

Definition 3.3. (Mixing Time). Let C be a Markov chain on the state space Ω, started at x ∈ Ω
with transition probability matrix P and stationary distribution π. For ε > 0, the total variation
mixing time of the Markov chain C is defined as follows:

τx(ε) := min{t : ‖P t(x, · )− π‖TV ≤ ε},

8
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where P t(x, · ) is the distribution of the chain started at x at time t.

Now, we will use the theorem of Anari et al. [1], which gives the convergence speed of the
distribution of the lazy MCMC described in Algorithm 1 to its stationary distribution. In what
follows, PPk

L
denotes the transition probability matrix ofM.

Theorem 3.4 ([1]). For any k-DPP, PkL defined on all subsets X ⊂ X of size k, ε > 0 and
starting point X, the Markov chain described in Algorithm 1 verifies:

τX(ε) ≤ 1
CPk

L

· log
(

1
ε · PkL(X)

)
,

where
CPk

L
= min

X,X′∈S
max

(
PPk

L
(X,X ′), PPk

L
(X ′, X)

)
and is at least 1

2kn by construction.

Theorem 3.4 is a very generic theorem, the linear factors k and n are appealing but the term
under the log can make the bound quite large if PkL(X) is small enough. Therefore, the next
theorem provides a more accurate estimate by giving a lower bound to PkL(X).

3.2.3. Mixing Time

The following theorem studies the convergence speed of the distribution of the Markov chainM
to the stationary distribution PkL, for which a polynomial bound on the mixing time is offered.

Theorem 3.5. Let PkL be a k-DPP where L is the matrix defined by Equation (2.2). For any
ε > 0, the lazy Markov chain defined in Algorithm 1 on a tree where all points have height h
generates an ε-approximate sample of PkL in time

τε ≤ 2k2n · log

 n(h− 1)(
ε ·
(
1 + k(h− 1)

)) 1
k

(
1 + k

h− 1

) 1
k

 .
Proof. As a first step and according to Theorem 3.4, we need to find a lower bound for

CPk
L

= min
X,X′∈supp{Pk

L}, |X|=|X′|=k
max

(
PPk

L
(X,X ′), PPk

L
(X ′, X)

)
.

To do so, let us consider a set X ⊆ [n] such that |X| = k and choose an element u ∈ X
and v /∈ X uniformly and independently at random and let Y = X \ {u}. Following Kang [9],
the acceptance probability is lower bounded by the ratio of the determinants of two matrices as
follows:

det(LY ∪ {v})
det(LY ∪ {u})

= cv − bTv L−1
Y bv

cu − bTuL−1
Y bu

, (3.1)

where u and v are the elements being removed and added, respectively. Thus, the transition
probability is:

PPk
L

(
Y ∪ {u}, Y ∪ {v}

)
= q

(
Y ∪ {u}, Y ∪ {v}

)
· 1

2 min
{
cv − bTv L−1

Y bv

cu − bTuL−1
Y bu

, 1
}
.

Therefore, the lower bound of CPk
L
is obtained by using the fact that q is a symmetric transition

matrix:

CPk
L

= min
Y,v,u

max 1
2q
(
Y ∪ {u}, Y ∪ {v}

)(
min

{
cv − bTv L−1

Y bv

cu − bTuL−1
Y bu

, 1
}
,min

{
cu − bTuL−1

Y bu

cv − bTv L−1
Y bv

, 1
})

≥ 1
2kn
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which is the result of Anari et al. [1].
To complete the proof, PkL needs to be bounded from below. By property of Gram matrices

determinants,
det(LX) = d(u,X \ {u})2 det(LX\{u})

where d(u,X \ {u}) represents the distance between u and its projector on the span of vectors
X \ {u}. This distance is minimized by having all coordinates equal except one, that is when
the leaves have only common ancestors. Thereby, we obtain as lower bound for PkL:

detLX =
∣∣Ik + (h− 1)11′

∣∣
=
(
1 + (h− 1)1′1

)
by the matrix determinant lemma

= 1 + k(h− 1).
In addition, according to equation (2.1), we should also calculate the normalization constant.

Then, for any set X of cardinality k we look for X ′ ⊆ [n] of size k maximizing detLX . Thus, by
considering the intersection kernel, we define LX′ as follows:

LX′ =


h 1 . . . 1

1 . . . . . . ...
... . . . . . . 1
1 . . . 1 h

 .
Then, we can compute the determinant of LX′ as follows:

detLX′ =

∣∣∣∣∣∣∣∣∣∣

h 1 . . . 1

1 . . . . . . ...
... . . . . . . 1
1 . . . 1 h

∣∣∣∣∣∣∣∣∣∣
=
∣∣(h− 1)Ik + 11′

∣∣
= (h− 1)k

∣∣∣∣Ik + 1
h− 111′

∣∣∣∣
= (h− 1)k

(
1 + 1

h− 11′1
)

by the matrix determinant lemma

= (h− 1)k
(

1 + k

h− 1

)
.

Consequently,

PkL(X) = det(LX)∑
|X′|=k det(LX′)

≥ 1 + k(h− 1)(
n
k

)
(h− 1)k

(
1 + k

h−1

) ≥ n−k
(
1 + k(h− 1)

)
(h− 1)k

(
1 + k

h−1

) .
Now, by using Theorem 3.4, we can directly upper bound the mixing time in total variation

distance as follows:

τX(ε) ≤ 1
CPk

L

· log
( 1
ε · PkL(X)

)

≤2kn · log
(
nk(h− 1)k

(
1 + k

h−1
)

ε
(
1 + k(h− 1)

) )

≤2k2n · log

 n(h− 1)(
ε ·
(
1 + k(h− 1)

)) 1
k

(
1 + k

h− 1

) 1
k

 .
This proves the result. �
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The obtained speed is thus mainly quadratic in k and linear in n. Usually, parameter k
(number of leaves/species been sampled) is defined by the user. Note that k can range from tens
to several thousands of species and its value mainly depends on the type of the undertaken study.
If the sampled set of species is dedicated to Multiple Sequence Alignment (MSA) creation, the
range of k is usually between 50 and 500. Indeed, MSAs have generally to be manually examined
and curated and more than 500 sequences are barely manageable for human inspection. In the
case of phylogenetic or comparative genomic studies, k can be up to several thousands of species
as these studies are mainly computational, although the large number of species may then affect
the computation times.

4. Experiments

In order to evaluate our method, we compare it with an alternative straightforward way of
sampling within a tree. In this method, called henceforth “proportional method”, species are
selected proportional to the number of children weighted by their descendants in each subbranch,
starting from the root. In other words, at a given node, the k samples are shared between the
N children proportionally to the respective number of leaves attached to each of them. If the
total number of leaves descending from the root node is L and li the number of leaves attached
to children i, then the number of samples to be taken from node i is simply ki = li

Lk with the
necessary roundings. The process is repeated for each node until reaching the leaves.

The two algorithms were used to sample k = 200 species from the “Eukaryota” (taxa ID
2759) branch of the “Tree of Life”, a phylogenetic tree of all completely sequenced species. The
list of complete genomes and their taxonomy were taken from the UniProt (Universal Protein
Resource, https://www.uniprot.org) database (Pundir et al. [18]). The tree contains all clades
up to the species level, subspecies and strains are discarded from the set of taxa. As of January
25 2018, the tree contains 3871 nodes including 1356 leaves (species). After applying the two
methods, the resulting sets of sampled species were boxed on the tree as shown in Figure 1 as
supplementary material. The yellow boxed squares correspond to our method, the blue boxed
squares correspond to the proportional method.

A close inspection of the two sets shows that Algorithm 1 favors nodes with high complexity
compared to the proportional method. For example, under the “Craniata” taxon, part of the
“Vertebrata” branch, Algorithm 1 selects 22 species whereas the proportional method selects
only 18. Under the “Aves” class, our method selects 11 species where the proportional one
selects only 8, leading to a poorer diversity. This could be explained by the fact that our method
better fits the tree topology.

Under the “Primates” node, both methods select two species: our algorithm selects “Otolemur
garnetti” and “Homo sapiens”, two species that are evolutionarily distant from each other. In
contrast, the proportional method selects “Pan troglodytes” and “Gorilla gorilla”, which are
much more similar to each other and do not reflect the diversity of the “Primates” branch. Our
method makes a choice that optimizes the distance between the selected taxa. As a last example,
the whole “Amphibia” branch is completely absent from the proportional method sample set.
Our method selects at least one species extending the diversity at the “Tetrapoda” level.

As a robustness test, theDPP method has been applied to a huge phylogenetic tree (the whole
“Tree of life” limited at the species clade), which contains 1363190 nodes of which 1232884 are
species ([18]). The tree has a height of 37. The number of iterations is set to 1000000 and
k = 1000. The computation takes 106 minutes on an Intel Xeon E5-2640 processor 2.5 GHz.
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5. Conclusion

In this paper, the main focus was on an application of k-DPP to sampling of leaves in phyloge-
netic trees. The convergence speed of the general case has been treated by the article of Anari et
al. [1]. They used a greedy algorithm of Çivril and Magdon-Ismail [3] to generate a set X ⊆ [n]
such that PkL(X) is bounded away from zero. They found a set X such that det(LX) ≥ n−k.
However, in Theorem 3.5 and according to the kernel chosen (equation (2.2)), we managed di-
rectly to bound det(LX) without using the algorithm of Çivril and Magdon-Ismail [3] allowing
us to gain substantial time at the initialization step and also making the convergence speed
bound more explicit.

The experiments demonstrate the effectiveness and efficiency of this approach by showing that
diverse subsets of species of size k selected from more than one million species are more likely
to be sampled than less diverse ones and this is achieved in a polynomial time with respect to
k and the number of leaves n.
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