
MathematicS

In Action

Jean-François Boulanger, Franck Corset,
Franck Iutzeler & Jérôme Lelong
Classifying and explaining defects with small data for the semiconductor industry
Volume 11 (2022), p. 109-114.
https://doi.org/10.5802/msia.20

© Les auteurs, 2022.
Cet article est mis à disposition selon les termes

de la licence Creative Commons attribution 4.0.
http://creativecommons.org/licenses/by/4.0/

C EN T R E
MER S ENN E

MathematicS In Action est membre du
Centre Mersenne pour l’édition scientifique ouverte

http://www.centre-mersenne.org/
e-ISSN : 2102-5754

https://doi.org/10.5802/msia.20
http://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/


MathematicS In Action
Vol. 11, 109-114 (2022)

Classifying and explaining defects with small data for the
semiconductor industry

Jean-François Boulanger ∗
Franck Corset ∗∗

Franck Iutzeler ∗ ∗ ∗
Jérôme Lelong †

∗ UnitySC , 611 rue Aristide Bergès, Z.A. de Pré Millet, 38330, Montbonnot-Saint-Martin,
France
E-mail address: jf.boulanger@unity-sc.com
∗∗ Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
E-mail address: franck.corset@univ-grenoble-alpes.fr
∗ ∗ ∗ Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
E-mail address: franck.iutzeler@univ-grenoble-alpes.fr
† Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
E-mail address: jerome.lelong@univ-grenoble-alpes.fr.

Abstract

In this work, we present an automatic classifier of wafer defects for the semiconductor industry. Hopefully
defects are rare, but this puts the classifying problem in a small data context. We propose a fast and fully
reproducible approach based on decision trees. The main interest of using decision trees lies in obtaining a
highly explicable classifier, which makes the origin of the defect easy to identify.

1. Introduction

In this note, we provide an overview of our work on the classification of wafer defects as part of
an industrial collaboration between Univ. Grenoble Alpes and UnitySC .

Context. Maimosine (https://www.maimosine.fr/) is a federative research structure hosted
by Laboratoire Jean Kuntzmann, Université Grenoble Alpes and CNRS, that aims at promoting
the development of cross-disciplinary projects based on mathematical modelling and simulation.
One of Maimosine’s main goals is to boost collaborations between academic research and inno-
vative companies in the Grenoble area.

UnitySC develops and manufactures high precision tools for the semiconductor industry world-
wide. Research focused, the company’s strategy is to design and integrate cutting-edge optical
sensors and advanced algorithms to achieve the best measurement performance. The applications
of the company automatically detect and classify small-dimension defects on customer products
and measure feature sizes for process control.

The goal of this collaboration is to classify manufacturing defects on wafers from real data
provided by the company. The data comes from physical measurements and various quantities
automatically derived from proprietary image processing techniques. So far, this classification
task was performed manually by highly qualified engineers which was very costly and time-
consuming; in addition, the produced classification suffered from consistency issues depending
on who was in charge of the classification. This work aims at replacing the manual work by a
supervised learning approach of the defect classes based on data already labeled by experts. As
an additional requirement, the approach should return a set of constraint boxes on the input
features, each constraint box corresponds to the prediction of a given defect. This additional

109

mailto:jf.boulanger@unity-sc.com
mailto:franck.corset@univ-grenoble-alpes.fr
mailto:franck.iutzeler@univ-grenoble-alpes.fr
mailto:jerome.lelong@univ-grenoble-alpes.fr
https://www.maimosine.fr/


Jean-François Boulanger, Franck Corset, et al.

requirement has emerged during preliminary discussions with the company, stemming from
interpretability and real-time needs on the prediction process.

Learning a classifier. A classification problem consists in learning a mapping h from some
input space X to one of K possibles classes. To do so, from a data set consisting of n pairs of
example/class {xi, yi} ∈ X × {1, . . . , K}, i = 1, . . . , n, the objective is to find a mapping that
fits well the given data and also generalizes well to other pairs, provided that they are not too
different from the original data.1

Lots of models and associated algorithms exist to find such predictors (Nearest Neighbors,
Support Vector Machines, Logistic Regression, Random Forests, Neural Networks to name a
few; see [2, 3] for a review and [4] for a Python implementation and comparisons). Beyond
their performance, these models differ a lot in terms of prediction functions. Indeed, if a Neural
Network is trained, the prediction consists in feeding it the new example to classify, which can
be costly in terms of storage and prediction time on small processing units. Furthermore, these
kind of methods are sometimes decried in industrial applications for their lack of interpretation.
Linear methods such as SVM or logistic regression predict a class from a linear combination of the
input coordinates/features, which is easier to interpret in particular when K = 2, but may suffer
from performance limitations. Decision trees offer a good compromise between performance and
interpretability. These methods consist in sequentially partitioning the input space by finding
the feature and value that separate best the different classes.

Specificity of the task. Interpretability was indeed a key concern in our work. The classifier
produced by the supervised learning approach had to be understandable by the senior engineers
at Unity who used to carry out this task manually. Thus, our goal was to output simple rules
in order to enable them to quickly identify the production step responsible for the defect in the
manufacturing process. Moreover, the classifier had to be encoded in XML using only boundary
constraints on the input features. Then, it was obvious that the classifier had to expressed
in terms of “boxes” written as a product of one dimension intervals. Decision tree classifiers
are precisely designed to produce such classification rules and were thus our workhorse in this
collaboration.

2. Modelling and Methodology

2.1. Data set

The data provided by the company is a set of features obtained from a multi-stage image
processing on 1190 defective wafers, representing 13 common types of defects. Each wafer is
photographed using three acquisition modes leading to as many data layers. Then, these layers
are analyzed to detect potential defects. They are presented as small thumbnails from which a
predefined set of features are measured. Our features correspond to these 195 extracted values
and the defect class is annotated manually by a senior engineer.

Obviously, some defects may not be visible on all layers, which implies that the data set
obtained by aggregating the data from all the layers has a lot of missing data. Note that in this
context a missing data is actually very meaningful since a value is missing when the associated
feature could not be measured because it was not present in the thumbnail. As almost all the
features were actually representing lengths, it was crystal clear that missing data had to be set
to 0. Another possibility would be to add for every layer a Boolean variable stating the presence
of absence of the defect in the given layer in order to obtain a more easily readable classifier,
but this solution was found to be less robust while offering virtually the same performance.

1From a mathematical point of view, we can model the data set as a sampling from some unknown distribution.
Then, we expect our predictor to perform well on other pairs sampled from the same distribution.

110



Classifying defects with small data

Classification results highly depend on the training data. In particular, anyone who intends
to use a classification algorithm must be fully aware that any bias in the training data will
automatically be passed to the classifier. This phenomenon is well-known by researchers working
on automatic classification and naturally tends to expand when using reinforcement learning as
the algorithm learns from its own decisions. As a guarantee against these bias issues or outliers,
we advise to remove from the input dataset any defect class with too few samples, which would
produce classification rules without any real foundation, especially since some of these defects
were flagged as borderline by the experts. In practice, we remove any defect class with less than
10 samples in our tests.

2.2. Supervised learning and decision trees

Consider a training set built of n labeled samples Dn = {(xi, yi) ∈ X × K, i = 1, . . . , n}, where
X is the feature space and K the types or classes of defects. A classification can be modeled as
a function h : X −→ K, which associates a defect class to an element of X (typically a subset
of Rp where p is the number of features). To measure the fitness of the classifier, we usually
define a merit function. For instance, it can be its accuracy defined as the fraction of correctly
classified data

M(Dn; h) = 1
n

n∑
i=1

`(xi, yi; h) where `(x, y; h) =
{

1 if h(x) = y

0 otherwise

In this work, a classifier can be identified to a partition of X in which every element of the
partition (referred to as a box) can be written as a product of intervals, ie. X is split into disjoint
sets B1, . . . ,Bb taking the form

Bj = {x ∈ X , j1 ≤ x[1] ≤ j1, . . . , jp ≤ x[p] ≤ jp}

where x[k] represents the k-th element of x (hence the k-th feature among the p features).
Then, for every j, Bj is associated to a given defect class. Let us denote this mapping by
a : {B1, . . . ,Bb} → K. In this context, the classifier h can be written

h(x) =
b∑

j=1
a(Bj)1x∈Bj .

Decision Trees [1] are known to produce a partition of the feature space of the form {B1, . . . ,Bb}
along with the mapping a. Indeed, they consist in iteratively partitioning the input space along
one feature at a time, resulting in a tree-like structure whose leaves represent the boxes of our
classifier. Their main parameters are how to find the best possible splitting thresholds, which
is done by looking at the split that increases most the purity of the leaves measured in terms
of Gini coefficient or entropy; and how many leaves to output, which can be set by either con-
straining the depth of the tree or its width. Although, decision tree classifiers are sub-optimal,
their accuracy is already very good and they are obtained using cross-validation.

The number of boxes b (or equivalently of leaves in our case) plays a major role in the balance
between goodness of fit and generalization. Indeed, with b sufficiently large, one can form a box
around every input point to achieve a perfect accuracy; however, the generalization to unseen
data can be arbitrarily bad. Thus, we fix a maximal number of boxes B by cross-validation
before finding the optimal classifier with at most B boxes on the full dataset. As an illustration,
we display in Figure 2.1 a decision tree for our problem with 6 boxes (the number of boxes is
actually much greater in practice).

111



Jean-François Boulanger, Franck Corset, et al.

Figure 2.1. Example of a Decision Trees with 6 leaves/boxes

2.3. Performance & Validation

Decision trees are prone to over fitting, that is why we cross validate the parameters of the tree
(maximal width, depth, minimal number of samples in a leaf, impurity measure) by performing
10-fold cross validation.

We compared the obtained accuracy to other classifiers in Table 2.1. We observe that the
Decision Tree offers a much better accuracy than the Logistic regression, this is mostly due to
the highly non-linear aspect of the problem.

Table 2.1. 10-fold cross validation performance of several methods. We display
the average accuracy on the 10 folds as well as the standard deviation.

Method Accuracy Commentsave. sdev.
Decision Tree 0.605 (0.083) method used

Logistic regression 0.420 (0.076) linear classifier minimizing the cross-entropy loss
Random Forest 0.635 (0.072) ensemble of 100 random decision trees

Gradient Boosting 0.720 (0.086) gradient boosted ensemble of 100 decision trees

We also compare decision trees to ensemble methods. These methods are based on the ag-
gregation of several trees and are known to overcome the tendency to over fitting of decision
trees; they also usually offer good performances. Thus, they can be seen as a performance target
in our case. Compared to decision trees, theses approaches perform respectively 3% and 11%
better. However, these methods aggregate several trees (usually 100) and thus produce decision
frontiers that are much less interpretable and implementable, making them unfit for our target
problem.

3. Impact for the company

The method described above has been integrated in the processing tools of UnitySC . A learner
module is first presented to the operator to label imagelets of defects detected on a wafer like
represented on Figure 3.1. This process is done offline during the recipe creation. Then, from the
learned classification tree, an automatic classification module for production has been integrated.
It allows process engineers to see in a glance the results of defect classification as represented on

112



Classifying defects with small data

Figure 3.1. Interface of the learner module interface. Example of learned de-
fects: contaminant

(a) Contaminant (b) Particle (c) Stain

Figure 3.2. Image examples of 3 different defect classes.

Figure 3.3 where the location and labels of defects are displayed on the wafer map. The graylevel
and binary mask imagelets of the defects are also accessible through that interface.

The example presented across the different figures corresponds to an automatic defect clas-
sification applied to data acquired by the edge inspection module developed at UnitySC . This
module composed of several cameras acquires graylevel images of the edge of wafers. Then, the
defects are detected through an automatic image processing framework.

For this example more than 80000 defects are detected on the edge of the test wafer (which is
a highly contaminated one compared to what is usually inspected). Depending on the nature of
defects, several classes are defined as represented on Figure 3.2. Defects of different nature are
present and correspond to process residue or contamination by the environment. Automatically
making the difference between the cases is often a key for the final customers.

113



Jean-François Boulanger, Franck Corset, et al.

Figure 3.3. Interface of the classification presented to the final user. Locations
and labels are displayed on the wafer maps. Examples of defect grey image and
binary mask are visible.

When tackling application cases where many singularities (i.e. area on wafers declared as de-
fects on the detection phase) are present on the surface of wafers, the software module developed
during this project presents several advantages in terms of reliability and flexibility.

4. Conclusion

In this work, we have designed a reliable classification tree which reached the specified perfor-
mance in term of precision. The method allows us to save time and increases the reliability of the
classification process. The produced classification tree eases the work of application engineers
and avoids them to waste time on complex data visualization and manual classification tree set
up. The effort is actually focused on acquisition and labelling, which are straightforward tasks.
The result is also reproducible and maintainable since it does not depend on the subjective
choice of an operator on what feature to select and what threshold to set.

References

[1] Leo Breiman, Jerome Friedman, Richard A. Olshen, and Charles J. Stone. Classification and regression
trees. Routledge, 2017.

[2] László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. A distribution-free theory of non-
parametric regression, volume 1. Springer, 2002.

[3] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data
mining, inference, and prediction. Springer, 2009.

[4] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine
learning in Python. J. Mach. Learn. Res., 12:2825–2830, 2011.

114


	1. Introduction
	2. Modelling and Methodology
	2.1. Data set
	2.2. Supervised learning and decision trees
	2.3. Performance & Validation

	3. Impact for the company
	4. Conclusion
	References

