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Abstract

The purpose of this article is to discuss several modern aspects of remeshing, which is the task of modifying
an ill-shaped tetrahedral mesh with bad size elements so that it features an appropriate density of high-quality
elements. After a brief sketch of classical stakes about meshes and local mesh operations, we notably expose
(i) how the local size of the elements of a mesh can be adapted to a user-defined prescription (guided, e.g.,
by an error estimate attached to a numerical simulation), (ii) how a mesh can be deformed to efficiently
track the motion of the underlying domain, (iii) how to construct a mesh of an implicitly-defined domain,
and (iv) how remeshing procedures can be conducted in a parallel fashion when large-scale applications
are targeted. These ideas are illustrated with several applications involving high-performance computing. In
particular, we show how mesh adaptation and parallel remeshing strategies make it possible to achieve a
high accuracy in large-scale simulations of complex flows, and how the aforementioned methods for meshing
implicitly defined surfaces allow to represent faithfully intricate geophysical interfaces, and to account for
the dramatic evolutions of shapes featured by shape optimization processes.

Keywords: remeshing, implicit domain meshing, level-set discretization, topology optimization, mesh adaptation,
h-adaptation, error estimator, metric, “lagrangian” mesh deformation, distributed memory parallel remeshing,
hybrid RANS/LES, LES, geophysical inverse problem.
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1. Introduction

Since the early days of scientific computing, simplicial meshes (that is, meshes composed of tri-
angles in 2d, or tetrahedra in 3d) have been raising a constantly renewed interest as a prominent
means to represent and process complex domains. For instance, they have been used extensively
to account for a shape in the perspective of its visualization; more recently, STL mesh files have
become one of the most widespread formats under which shapes are supplied to 3d printing ma-
chines. Furthermore, and closer to the scope of the present article, the most popular numerical
simulation frameworks for physical phenomena (namely, the finite element method, or the finite
volume method) crucially rely on a meshed discretization of the computational domain. We refer
for instance to [21] for a general presentation of several stakes and applications of meshing.

In line with this omnipresence of meshes in the numerical treatment of shapes, the issues of
mesh generation and mesh processing have received a tremendous amount of attention in the
literature, resulting in various efficient algorithms and software packages, such as Meshlab [32]
Gmsh [59], CGAL [97], Tetgen [93], to name a few free and open-source instances.

Despite these numerous investigations and achievements, meshing is still a thriving field for
academic and industrial research: some old and major challenges remain (in particular, it is still
unfortunately difficult to create a valid surface triangulation of the boundary of a complex 3d
domain, then to fill the volume with a valid tetrahedral mesh) while modern applications suggest
new and promising directions for investigations.

Many such applications fit in with the context of remeshing, where one aims to modify an
existing, valid, albeit ill-shaped and badly sampled mesh, so that it better comply with given
requirements, such as a good element quality, an adapted element density, etc. The purpose of
this article is to discuss and illustrate several such aspects of tetrahedral remeshing. These, as
well as the proposed means to address them, are suggested by the knowledge of the authors,
without ambition of exhaustivity.

(1) The primary target of remeshing is to adapt the local size of a mesh (i.e. its element
density) to the geometric features of the represented domain, or to an error estimate
associated to a numerical simulation of interest.

(2) When a physical simulation implies an evolution of the underlying domain (as it is often
the case for instance in computational fluid dynamics, or in shape optimization), suitable
combinations between Lagrangian strategies and remeshing techniques make it possible
to efficiently account for this motion.

(3) The recent development of Eulerian interface-capturing methods (such as the celebrated
level set method) has made it quite popular to represent a shape Q implicitly, i.e. as the
negative subdomain of a scalar function ¢ : D — R, defined on (a fixed mesh of) a given
computational domain D. In this context, one may need an exact mesh of {2, which calls
for a methodology for constructing a mesh of such an implicit domain.

(4) When the size of the computational mesh is so large that it can barely be stored in
memory, it is crucial that the remeshing process be carried out in a parallel fashion.

Understandably enough, these issues find particularly relevant applications in the recent con-
text where the sustained increase in computational power and the advent of high-performance
computing herald high resolution, very accurate numerical simulations of complex physical phe-
nomena. The presentation of this article is guided by this perspective of large-scale simulations.
In particular, it mainly takes place in the three-dimensional context, which is on every aspect
more involved than its two-dimensional counterpart, to which we shall occasionally refer for ped-
agogical purposes, or as a preliminary step towards a future three-dimensional implementation.
We discuss the use of the presented remeshing features in the context of applications involving
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high performance computing; all these features are implemented in the open-source software
mmg [3], which is used consistently in this exposition. A thorough technical description of this
environment can be found in the article [37], see also [36, 43].

This article is organized as follows. In the next Section 2, we briefly review some basic material
about meshes and remeshing, before describing a little more precisely some modern applications
in different contexts of use. We then present several applications of these methods, and variants
of them dedicated to the context of high-performance computing: in Section 3, an error estimate
based adaptive remeshing strategy is implemented in the context of unsteady fluid mechanics
simulations. The next Section 4 arises in the context of shape and topology optimization, where
an implicit domain meshing methodology is carried out to track the motion of the optimized
domain, while allowing for an explicit, meshed description of the latter throughout the opti-
mization iterations. The application of this idea of meshing implicitly-defined interfaces is then
applied in the field of geoscience in Section 5, to the construction of an explicit and accurate
meshed representation of geophysical interfaces. Finally, in Section 6, we exemplify how a par-
allel implementation of mesh adaptation techniques makes it possible to track efficiently the
motion of complex fluid interfaces, such as a turbulent flame front or a liquid droplet, with a
very high resolution.

2. A few aspects of tetrahedral remeshing

In this section, we present the remeshing features at stake in this article. After a short summary of
basic concepts about meshes in Section 2.1 and a general presentation of remeshing in Section 2.2,
we describe in Section 2.3 the issue of mesh adaptation. In the next Section 2.4, the problem
of mesh displacement is discussed; in Section 2.5 we broach the idea of isosurface discretization
before finally dealing with parallel remeshing in Section 2.6.

2.1. General facts about meshes and notation

Let us start by introducing briefly the needed background material about tetrahedral meshes in
this article; for these issues, we refer to e.g. [20, 27, 55, 68, 98] for further details.
Formally, let  C R? be a bounded domain; a mesh of Q is a collection T = {T;};,_; .. of
open tetrahedra, accounting for a covering of €2, in the sense that
Nt

2l
|

In addition, it is assumed that
e 7 is walid: the open simplices T; are mutually disjoint: T; N T; = 0, i # j,

e T is conforming: each intersection T; N T}, i # j, is reduced to either a vertex, an edge,
or a face of the mesh.

A mesh T additionally bears information about a surface triangulation S, that is, a collection
{Si};=1, g of triangles S; C R? accounting for one or several pieces of surface. In the most
simple instances, S is made of the external faces of the tetrahedra T' € T, as a (approximate)
representation of the boundary of €2. However, in some applications, {2 comprises several subdo-
mains, whose tetrahedra are identified with different labels. In such cases, S also contains the
triangles of the corresponding inner boundaries, see Figure 2.5 (right) below for an example.

Usually, the creation of a mesh 7T of 2 starts from the datum of a surface triangulation S of
the boundary 9 (which is often supplied by a CAD software). Thence, several strategies are
available to fill the volume of € with tetrahedra conforming to this triangulation, the perhaps
most efficient ones being based on the constrained Delaunay algorithm, see for instance [27, 55]
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for detailed presentations of the latter. Let us mention that, in spite of having been extensively
addressed for decades, mesh generation is still a delicate issue when very intricate shapes are
considered.

Beyond the aforementioned mild requirements, it is often desirable to evaluate more closely
“how well” a mesh 7 lends itself to accurate numerical simulations. This feature can be appraised
in at least two independent ways, which are illustrated on Figure 2.1.

e Most numerical methods experience trouble when the mesh T contains very flat, nearly
degenerate elements. For instance, such configurations are well-known to increase dra-
matically the condition number of finite element systems based on this mesh, thus slowing
down iterative matrix solvers, see e.g. the books [31, 49] about this classical issue. Sev-
eral quantities are used in the literature to discriminate “well-shaped elements” T; (i.e.
those that are close from being regular tetrahedra), from “ill-shaped” ones (i.e. that are
nearly degenerate); for instance, the following measure of the quality of a tetrahedron T
is quite popular in the literature:

Vol(T
o) =
(Z’i:l |€i’2) ?
where e;, 1 = 1,...,6 are the edges of T', Vol(T') is its volume, and « is a normalization

factor. This quantity Q(T') equals 1 when T is regular, and it is close to 0 when T is
nearly degenerate.

e Another crucial feature in the evaluation of the quality of T is related to an issue which
we have overlooked so far. Often, the domain €2 of interest is smooth, and has a curved
boundary 02, while the faces of the surface triangulation S, intended as a discrete
approximation of the latter, are planar. Hence, it should be required from S that it be
a close approximation of the smooth surface 92 up to a certain tolerance, for instance
in terms of the Hausdorff distance between S and 0.

Summarizing, we shall expect from a mesh 7 of €2 that each tetrahedron T; have quality Q(T;)
close to 1, and that the surface triangulation S be a “close” approximation of the continuous
surface 0.

2.2. Basic stakes about remeshing

As suggested by the name, remeshing assumes the datum of a tetrahedral mesh T of €2 which is
valid and conforming, but may still be unsuitable for computation: as discussed in Section 2.1,
T may suffer from poor element quality, or its element density may be inadequate, in the sense
that curved regions of the boundary 99 (or other, internal surfaces) are represented by too few
elements. Remeshing aims to modify T into a high-quality mesh T of ), whose element density
is well-tailored to its geometric features.

This objective is usually achieved thanks to a series of local operations, which are applied
iteratively; these are briefly described below, and illustrated on Figure 2.2 in the (simpler)
two-dimensional context.

e Fdge split: When an edge pq is “too long”, a new vertex m is inserted in the mesh T pq is
replaced by the two edges pm and mgq and the connections of 7 are updated accordingly.

e FEdge collapse: When an edge pq is “too short”, its endpoints p and ¢ are merged and
the connections of the mesh 7 are updated accordingly.
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(c) (d)

FIGURE 2.1. (a) Fine geometric approximation of a domain €, with a mesh
containing bad quality elements; (b) good quality mesh of Q;; (c¢) good quality
mesh of a domain 9, accounting for a poor geometric approximation of Qs; (d)
mesh of )9 with a good geometric approximation property.

e Fdge swap: An edge pq is removed from the mesh 7 and the “shell” of pq, consisting of
all the tetrahedra sharing this edge, is adequately reconnected.

e Vertex relocation: A vertex p is moved slightly, while all its connections remain unaltered.

Each of these operators exists under two different versions, depending on whether it is applied
to a surface configuration, involving tetrahedra bearing surface triangles S; € S, or to an internal
one. For instance, when an internal edge pq of T is split, the inserted point m is usually chosen
as the midpoint of p and ¢; on the contrary, when pg € S is a boundary edge, m is rather placed
on the continuous surface 0€). In practice, since this “ideal” surface is unknown, the position
of m is inferred from those of p and ¢, and other associated geometric quantities (such as the
normal vectors at p and gq).

In the above description, the criterion whereby an edge pq is deemed to be “too long” (or
“too short”) may depend on the situation. For instance, pg may be “too long” with respect to a
user’s prescription for the size of the elements of the mesh (see the next Section 2.3 about this
practice) or, when pg € S is a surface edge, it may be considered to be “too long” with respect
to the curvature of 92, as its size entails a too coarse geometric approximation of 9.

Last but not least, let us emphasize that the use of the above remeshing operators should
be carefully monitored: several checks are in order so as to prevent the emergence of invalid
configurations.
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FIGURE 2.2. (a) Split of the “long” edge pg: a new point m is inserted in 7 and
the triangles sharing this edge are subdivided accordingly; (b) collapse of point
q onto p: the two red triangles disappear, and ¢ is replaced by p in all the other
triangles connected to ¢ (in blue); (c¢) swap of the edge pq (in red): the connection
pq is traded for the alternative configuration, featuring the edge rs (in blue); (d)
relocation of the vertex p while maintaining all the connections in the mesh.

2.3. Goal-oriented mesh adaptation

As we have seen, the primary objective of remeshing 7 is to produce a mesh T with fine
element quality, which is a close approximation of the underlying domain . In addition to
these requirements, one usually demands that 7 should comply with a user-defined local size
prescription, which may be either isotropic or anisotropic:

e In the former case, the size prescription is encoded as a size map h : 0 — R, which is
often supplied at the vertices of 7 and interpolated from these data when necessary:
h(x) is the desired size for the edges near the point x € .

e In the latter case, the local size is imposed under the form of a metric tensor M :  —
R3*3: the eigenvalues of the symmetric, positive definite matrix M (x) encode the desired
size near x € 9€2, in the directions of the corresponding eigenvectors; see [99] about this
Riemannian framework and [70] for an interesting continuous paradigm based on this
idea.

This extra ingredient is incorporated into the general remeshing framework of Section 2.2 via
the calculation of the length of an edge pg when deciding whether it is “too long” or “too short”.
For instance, the length ¢, (pq) of an edge pg with respect to an isotropic size map h: Q — R

equals
_ [P @)

Ch(pa) : o W)
where 7 : [0,1] — R3? is an arbitrary parametrization of the segment pq such that v(0) = p and
v(1) = q. Hence, £,(pg) > 1 (resp. £n(pg) < 1) when pq is “too long” (resp. “too short”) with
respect to the desired local size.
Whether it is isotropic or anisotropic, the size prescription may stem from various considera-
tions. Here are two examples:

e Geometric error estimate: The local size of the edges of T should guarantee that the
geometric approximation of the smooth boundary 92 of 2 by the surface triangulation
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FiGUure 2.3. (Upper row) Adaptation of a mesh with respect to a geometric
size prescription; (left) initial mesh with size map, calculated on the basis of the
geometric approximation; (middle) adapted mesh with respect to this size pre-
scription; (right) adapted mesh with respect to a finer geometric approximation
requirement.

S is accurate enough, for instance, that the Hausdorff distance between 02 and S is
small; see Figure 2.3 for an example.

e A priori or a posteriori error estimate: In the perspective of reducing the computational
effort of physical simulations, the local size should be adapted to a surrogate quantity
for the error ||u — up|| between the solution u to a partial differential equation posed on
Q and its finite element approximation uy. This surrogate quantity may depend on u (a
priori estimate) or wuy, (a posteriori estimate); see for instance [49] for an introduction to
this practice.

Eventually, let us observe that while isotropic remeshing is by now a very popular idea for
tackling realistic and industrial applications, the use of an anisotropic size prescription seems
more limited, since even a slight misalignment of the resulting, very stretched elements may
jeopardize with the accuracy of the numerical computation, see e.g. [84, 92] about this issue.

2.4. “Lagrangian” mesh deformation

Many time-dependent physical phenomena imply an evolution of the simulation domain €2; for
instance, {2 may represent a volume filled by a fluid whose velocity is predicted by the resolution
of the Stokes, or the Navier—Stokes equations.

In this spirit, various applications demand to realize the motion of a domain 2", equipped
with a mesh 7", according to a velocity field V™ : Q" — R3, and to obtain a mesh 77! of
the next domain Q"*! := (Id +V")(2"). Here and throughout this section, the superscript ™
refers to discrete time. As we have mentioned, in practice, V™ results from a physical simulation,
conducted on the mesh T"; for the purpose of this section, we suppose that it is given, as a
(time independent) vector field defined at the vertices of T™.

Realizing this motion is a highly challenging task, which has been extensively considered in
the literature, see for instance [4, 11, 35, 44, 72]. The perhaps most intuitive strategy consists
in intertwining steps where each vertex p € 7" is pushed in the direction of the vector V"(p) as
long as the resulting mesh is valid (which quickly deteriorates the quality of 7"), with remeshing
steps for improving the quality of the resulting mesh, thereby allowing to reiterate the process.
One possible procedure based on this principle outlines as follows, see also Figure 2.4:

(1) Find the largest number 0 < ¢t* < 1 such that moving each vertex p € T" to p+t*V"(p)
results in a valid mesh;

(2) Apply all or just one subset of the remeshing operations of Section 2.2 in order to improve
the quality and the density of the resulting mesh;

(3) If t* < 1, go back to (1) by replacing the vector field V" (z) with (1 —¢t*)V"(x).
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FIGURE 2.4. Evolution of a domain 2 (an elastic cantilever beam) via a veloc-
ity field V" (supplied by the resolution of a shape optimization problem); the
vertices of the mesh 7" are displaced according to V™. (Left) initial shape and
associated deformation field; (middle) at iteration 150, the mesh becomes very
stretched; the resolution of the linear elasticity equation is very inaccurate, and
the deformation cannot be applied lest that the mesh becomes invalid; (right)
after quality-oriented remeshing, the deformation process is able to go on.

A number of additional heuristics may help this process, postponing the emergence of over-
lapping elements, i.e. allowing t* to be as close to 1 as possible during the first step. One popular
practice relies on the fact that only the values of the velocity field V™ (p) at those vertices p in
the surface part S™ of 7™ have an influence on the geometry of 2"*!, so that the motion of the
internal vertices of 7™ can actually be chosen arbitrarily. Among such possibilities, extending
the values of V™ on 8™ to the inner nodes of 7™ by solving a linearized elasticity system with
Dirichlet data V™ on 8™ tends to produce a motion with little compression, thus mitigating the
trend of elements to degenerate.

“Reasonably large” displacements of {2 can be realized owing to such Lagrangian strategies.
Yet, a number of situations are difficult to handle, especially when the considered motion implies
topological changes (e.g. the merger of two holes). A more robust strategy, combining remeshing
techniques with an implicit representation of the evolving domain, is presented in the next
Section 2.5 and Section 4.

2.5. Implicit domain remeshing

In several applications, the domain € of interest is not readily defined by a meshed representa-
tion. Rather, a large computational box D is introduced, which is equipped with a mesh 7T, and
) is defined as the negative subdomain of a scalar “level set” function ¢ : D — R (in practice,
defined at the vertices of T), that is:

o(x) <0 ifxeq,
VzeD, o(x) =0 if z €09, (2.1)
é(x) >0 ifzeD\Q.

This type of representation is ubiquitous in e.g. geometric modeling or shape reconstruction.
It has raised a tremendous enthusiasm within the numerical simulation community as the pivotal
ingredient of the celebrated level set method [82], devoted to the description of the motion of a
domain Q(t) C D according to a velocity field V (¢, z). Indeed, introducing a level set function
¢(t,-) for Q(t) (i.e. (2.1) holds at any time ¢ > 0), this motion translates into the following
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FIGURE 2.5. (Left) One “level set” function ¢ is defined at the vertices of the
mesh 7 of the square-shaped computational domain D; its 0 level set (which is
not explicitly discretized in 7)) is depicted in red; (middle) explicit discretization
of the 0 level set of ¢ into the mesh T the intermediate, low-quality mesh Tiemp
is obtained; (right) high-quality mesh T obtained after remeshing Tiemp-

advection-like equation:

o¢

ot
Hence, a geometric evolution problem is reformulated as a partial differential equation posed on
a fixed domain D, equipped with the fixed mesh 7; see for instance [81, 91] for comprehensive
introductions to the level set method.

Depending on the application, it may be of utmost importance to recover a mesh of ) from
the data of D and ¢; this is the case when for instance € is intended as the domain of physical
phenomenon, whose accurate numerical simulation is desired.

It is actually possible to modify the mesh T of D into a new (valid, conforming) “body-fitted”
mesh 7 of D where both Q and its complement D \ Q are explicitly discretized. This may be
achieved within two steps, as illustrated on Figure 2.5:

(t,z) + V(t,z) - Vo(t,z) =0, t>0, x€D. (2.2)

(1) Discretize the isosurface {x € D, ¢(x) = 0} into the mesh 7. This stage is simple and
relies the marching tetrahedra algorithm [45], as a variant of the well-known marching
cubes algorithm [69]: in a nutshell, each tetrahedron T" € T crossed by this isosurface is
subdivided according to a pattern. This ends up with a valid, conforming mesh Tiemp of
D, where 2 is explicitly discretized, but which generally has very bad quality.

(2) Remesh Tiemp into a fine quality mesh T of D, where Q is explicitly discretized.

2.6. Parallel remeshing

As the range of applications of physical simulations grows wider, and more and more realistic
applications are targeted, it is natural that very large meshes need to be handled and processed.
This raises the issue of modifying such a large mesh 7 in a parallel fashion.

In this direction, two quite different paradigms can be thought of. On the one hand, according
to shared memory strategies, the whole mesh data are stored on one single node; they are shared
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by the different processes or threads, and the remeshing operations are carried out in parallel.
On the other hand, distributed memory strategies advocate to divide 7 into several regions with
shared interfaces, which are independently remeshed on the different processors. Each of these
two strategies faces new, specific issues with respect to sequential remeshing algorithms, such
as the prevention of “parallel data races” (i.e. multiple processes trying to adapt the same mesh
entities) in the implementation of shared memory algorithms, and the preservation of mesh
conformity at the interface between regions treated on different processes in distributed memory
strategies.

In practice, physical simulation solvers are often parallelized over distributed memory ar-
chitectures. Hence, their combination with a sequential or shared memory implementation of
remeshing would imply to gather the whole mesh on one process, call the remesher and last,
redistribute the mesh onto each parallel process before calling the solver. The intense exchanges
of memory entailed in doing so are a well-known performance bottleneck for remeshing-based
numerical simulation strategies, see [84] for a discussion. Moreover, the considered mesh is some-
times so large that it cannot be stored in the memory of one single node, thus ruling out the
very possibility to use a sequential, or a shared memory implementation. These major drawbacks
plead in favor of distributed memory parallel strategies for remeshing.

Conducting the remeshing of 7 over a distributed memory architecture first requires to par-
tition 7 into disjoint submeshes 7, k = 1,..., K: no tetrahedra T € T belongs to two different
Ti. The surface triangles at the interface between two of these submeshes constitute a surface
mesh O, also referred to as parallel interface. The Ty, are sent and treated on different processes,
or ranks; this raises the following issues:

e The imbalance between the amounts of work conducted on each rank can hardly be pre-
dicted. Most often, the modifications involved in the remeshing process are non uniformly
distributed over T (this is the case when, for instance, goal-oriented mesh adaptation is
performed, see Section 2.3) and it is difficult to propose a priori an even repartition of
the amount of operations across the 7. For instance, balancing the number of elements
between ranks does not guarantee a balance of the work loads.

e Enforcing the conformity of the reunion of the submeshes 7, requires specific parallel
data structures (e.g. a table maintaining the correspondence between the shared surface
triangles S € O and the supporting tetrahedra pertaining to different ranks), whose
management is intricate. Notably, their update requires some parallel communication
and synchronization between ranks when one tetrahedron 7' bearing an interface entity
S € O is modified, and a careful reconstruction of the parallel interface O is in order
when the partition of 7 is modified (as is the case in the remeshing-repartitioning parallel
strategies broached below).

These concerns open the way to two strategies for conducting remeshing in parallel over
distributed memory architectures, which essentially differ by their treatment of the entities
S € O at the interface between two of the submeshes 7.

e On the one hand, each remeshing operator could be applied in parallel to the entities
in O, see e.g. [23, 30, 39, 80]. Doing so requires a tight communication between the
various processes sharing the considered configuration, in order to check the validity of
the realized operation and to update consistently the mesh connectivity;

e On the other hand, an iterative remeshing-repartitioning (or moving-interface) strategy
could be used, which intertwines

— A parallel remeshing of each domain 7T; on the associated process, while keeping
the entities in O unmodified;
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— A new subdivision of the mesh 7, creating new submeshes 7; and interface trian-
gulation O;

see [14, 25, 42, 52] about this approach, and Figure 2.6 for a 2d illustration.

It is expected that the repetition of this procedure allows each region of the mesh to be
modified. In this direction, the most crucial issues lie in the repartitioning operations.
Indeed, the remeshing of each region T simply makes use of a sequential algorithm such
as those presented in Section 2.2, but a fluid migration of the domain interfaces from
one rank to the other is mandatory to ensure that no element in the mesh stay at the
interface between submeshes, lest that it would stay unmodified. Moreover, this interface
migration procedure must ensure a fair balance of the work load between ranks in terms
of CPU cost, while keeping the amount of migrating data low, insofar as possible.

First iteration 2d iteration 3d iteration

remeshing\l«

~

interface migration

N

remeshingxl 1‘0111(‘,shing¢

interface migration

7

FiGURE 2.6. Illustration of an iterative remeshing-repartitioning parallel mesh
adaptation strategy performed over 3 processors: at each iteration, the mesh is
divided into 3 submeshes 7, k = 1,2,3, which are distributed over as many
processors; each 7y is then remeshed, independently of the other two, while the
entities at the rank interfaces (cyan edges) are preserved.

3. h-adaptive RANS and hybrid RANS/LES simulations of a nozzle with the
Discontinuous Galerkin method using unstructured meshes and isotropic
mesh adaptation

In this section, we present a mesh adaptation strategy devoted to the solution of the com-
pressible steady Reynolds-Averaged Navier—Stokes (RANS) and the unsteady Zonal Detached
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Eddy Simulation (ZDES) equations on hybrid prismatic/tetrahedral grids using Discontinuous
Galerkin (DG) methods, in the context of realistic, industrial applications. The developed mesh
adaptation algorithm is applied to RANS and hybrid RANS/LES simulations on the PPRIME
nozzle configuration for a DG formulation featuring elements with polynomial degree p = 1.

3.1. Context and motivation

The work presented in this section is motivated by the search for a simple mesh adaptation
algorithm to improve the computational efficiency of DG simulations for complex flow config-
urations relevant in an industrial context, where the necessity of keeping the simulation cost
“reasonable” is of utmost importance.

Steady RANS simulations are well established, and extensively used for industrial purposes.
Nevertheless, they may fail to capture the turbulence and noise generation mechanisms which
are often required in the design process. On the other hand, scale-resolving simulations (relying
for instance on the DNS (Direct Numerical Simulation), LES (Large Eddy Simulation), or hybrid
RANS/LES methods [89]), are capable of capturing the unsteady features in transitional flows,
gas turbine combustors and nozzles. In this work, we assess both the steady RANS [96] and the
ZDES hybrid RANS/LES models [40], in order to reduce the computational cost of the DNS and
wall-resolved LES turbulence modeling approaches, which require a very large (often intractable
in practice) number of degrees of freedom in space and time for capturing the smaller structures
developed in the boundary layer.

DG methods are particularly suited for turbulent flow simulations thanks to their good dis-
persion and dissipation properties. In addition, these methods provide a high order of accuracy
on arbitrary unstructured meshes, are suitable for parallel computing thanks to their compact
stencil and provide a natural framework for hp-adaptation; not only the size h of the elements
of the mesh can be adapted but also their polynomial degree p [46, 66, 100].

The new generation compressible flow solver CODA is employed to compute the flow solution
and the error estimators on an unstructured mesh. The CODA solver, designed for an efficient
use on current and future parallel HPC systems, is developed in partnership by Airbus, ONERA
and DLR [67] and targets academic and industrial aerodynamic problems. The object-oriented
CODA framework permits the integration of two spatial discretizations: a second-order Finite
Volume (FV) and a DG discretization with variable order, applied to the Euler, Navier—Stokes,
RANS and hybrid RANS/LES equations.

3.2. Mesh adaptation algorithm
3.2.1. Presentation of the mesh adaptation strategy

The general strategy is to adapt the computational mesh with respect to a relatively affordable
steady RANS simulation, which already captures some important features of the targeted un-
steady simulation. This mesh is then used as the computational support of an accurate, albeit
more expensive hybrid RANS/LES simulation.

The mesh adaptation process implemented in this work outlines as follows. A first steady
RANS simulation is carried out on a very coarse initial mesh. An a posteriori error estimator
aimed at controlling the accuracy of the solution in the elements of the mesh, is then computed;
the latter is described in the next Section 3.2.2. It is used to define a new mesh size prescription
guiding the refinement of the elements where the error is high, as we discuss in Section 3.2.4.
Remeshing is then conducted on the basis of this datum. The previous flow solution is projected
onto the obtained mesh, and the process is iterated: a new steady RANS simulation is performed,
etc.

Five such RANS adaptation steps are carried out, and a hybrid RANS/LES simulation is
eventually realized on the finest mesh adapted to the RANS equation.
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Note that the present strategy, whereby the accurate and expensive hybrid RANS/LES anal-
ysis is performed only on the finest mesh, which is adapted with respect to the relatively cheap
RANS simulation, is preferred over adapting the mesh from the beginning with respect to the
hybrid RANS/LES simulation. Indeed, an initial very coarse mesh would prevent the turbulent
structures of the flow from developing and yield numerical instabilities as well as a dramatic
increase in computational time for the whole adaptation process.

Note that this idea of employing adapted meshes obtained from steady simulations at a
low computational cost, as the starting point of an unsteady turbulent adaptation procedure
is expected to be a robust and reasonably cheap means to achieve a highly accurate hybrid
RANS/LES simulation. The evaluation of this methodology will be addressed in future research.

3.2.2. Description of the error estimator for the steady RANS simulation

Several indicators based on the discretization error have been developed in the DG simulation
literature. These types of error indicators are convenient thanks to their efficiency, locality,
simplicity and low computational cost [58, 71, 85, 87]. The error estimator employed in this
work is made of two contributions, similarly to what has been proposed in [34, 13, 12]: the first
one is based on the measure of the energy associated with the highest-order polynomial modes,
the Small Scale Energy Density (SSED) [78], while the second one relies on the inter-element
jumps (JUMP) [17] of the momentum. The resulting error indicator is local, inexpensive and
flexible, in the sense that an error indicator based on the highest order modes of the solution
is more reliable for a high polynomial degree p, while a jump-based error estimator is accurate
for every value of p. The two aforementioned contributions are normalized by their respective
maximum and minimum values over the tetrahedra T € 7T, so that the considered error estimator
finally reads:

er = €SSED,T — minT/eT(ESSED,T') n €JUMP,T — miHT’eT(EJUMP,T/) (3.1)

maxre7(€ssEp, ) — Mingrer(€ssep,rv) Mmaxrrer(€yump,r) — mingrer(e;ump, 1)

The quantity e is naturally defined at the level of the tetrahedra T" € 7. In practice, most
remeshing strategies rely on error estimators attached to the vertices of the computational mesh.
A consistent value ¢, may be attached to a vertex x by using a volume-weighted average of the
values er at the elements sharing x as vertex. This indicator is the key ingredient in the definition
of the imposed size h}, as we describe next in Section 3.2.4.

3.2.3. Description of the mesh adaptation loop

As we have mentioned, five mesh adaptation steps are performed. At the end of the RANS
simulation of step n, the element-based and vertex-based error estimators € and € are com-
puted, and the next imposed size h?*! is defined (see Section 3.2.4). The computational mesh
T™ available at step n is eventually remeshed, resulting in the new mesh 771,

The meshes 7™ are made of 2 regions: while most of the computational domain is filled with
tetrahedra, another region, associated to the boundary layer of the physical phenomenon under
scrutiny is composed of structured or pseudo-structured (i.e. prismatic) elements. At each step
n, only the tetrahedral part of 7" is remeshed. Moreover the user may decide not to remesh
some of the tetrahedra in the computational domain. Summarizing, the computational mesh 7"
is split into two parts:

T = ﬁllee U ET)L(ed (32)
where 7T is the tetrahedral zone subject to remeshing at step n, and 7. 4 contains the con-

stituent prisms of the boundary layer mesh, as well as the fixed tetrahedra.
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3.2.4. Size prescription for the steady RANS simulation

The size prescription is based on the idea, already present in [17] and [88], that the error er
attached to each element T' € T converges to zero with the rate p + 1, when no geometrical or
physical discontinuities are observed.

At each adaptation step n, the imposed size h?™! at the vertex x € T is updated according

to the rule:
1 6n+1,* ;Tlrl
B = ( ) , (3.3)
where ¢"T1* is a maximum value for the error, which is imposed globally to all the elements of

the mesh, with the aim to provide a fixed increase in the number of elements of the mesh at
each adaptation step [12, 17]. Adopting this strategy, the regions showing a larger value of the
error estimator than the imposed target €”t1* are refined by a factor depending on the ratio
€ T1* /en between this target and the actual value of the error, while regions characterized by
an error lower than €"*1* are left unchanged.

3.3. Numerical example: simulation of the subsonic turbulent nozzle jet flow

We appraise the above adaptive remeshing strategy in the physical context described in [22], for
which experimental and numerical data are available in the literature, see also [57] and [79] for
further investigations aimed at predicting turbulence generation and jet noise.

The main goal of this study is to simulate the turbulent isothermal subsonic jet issued from
a nozzle with exit diameter dy = 0.05m. The nozzle has an axial symmetry with respect to the
first coordinate axis e; (where (e1, 2, e3) stands for the canonical basis of R? and we denote by
(71,72, x3) the coordinates of a point € R? in this frame). The operating conditions are defined
in terms of the total pressure ratio P,/ P», = 1.7 and total temperature ratio T; /T, = 1.15, where
the ; and o subscripts refer to the stagnation and free-stream states, respectively. The jet is
assumed to be isothermal (Tjet/Too = 1.0), the jet Mach number is Mje = Ujet/cjer = 0.9, and
the Reynolds number equals Regy = pietUjetdn/ftjet ~ 1 - 10%, where Ujet is the mean jet exit
streamwise velocity, dy = 0.05m is the exit diameter of the nozzle, cjet is the speed of sound,
Piet is the density and pjet is the dynamic viscosity.

As we have mentioned, five mesh adaptation steps based on steady RANS simulations are
performed in the present study, and a final unsteady hybrid RANS/LES simulation is performed
on the finest RANS adapted mesh.

The initial mesh is generated with the pre-processing software ANSA [2]: the geometry of the
body and the far field boundaries are created and meshed with surface triangles; then, the
prismatic boundary layer surrounding the surface of the body (the internal and external walls of
the nozzle) is obtained thanks to a normal extrapolation of these surface triangles. The remaining
volume of the computational domain is eventually filled with tetrahedra.

Not only the boundaries of the computational domain and the prismatic elements of the
boundary layer mesh, but also the tetrahedral elements which are internal to the nozzle, are
fixed throughout the computation, and are not subject to remeshing. Indeed, tetrahedra free
to change size inside the nozzle but constrained by the fixed size of the surface could severely
deteriorate the quality of the mesh.

The initial mesh, containing around 1.5 million degrees of freedom is represented on Figure 3.1,
as well as the final mesh, resulting from the five-step adaptation process, containing around
10 millions of degrees of freedom. Remarkably, the mesh adaptation algorithm is capable of
detecting the flow regions of interest, leading to a concentration of the elements around the
potential core, and in the shear layer of the jet.
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Figure 3.1. Hlustration of the PPRIME nozzle configuration studied in Sec-
tion 3.3; (left) zoom of the initial mesh; (right) computational mesh after 5 steady
RANS adaptation steps in the jet zone.

0 T T T T T T T 0.1 T T T T T T T
00 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200
x/dy x/dy

o experiment —— RANS init 1.5M —— RANS adapt 4.5M —— RANS adapt 10.1M
x  LES reference —— RANS adapt 2M —— RANS adapt 6.9M  ==---: ZDES adapt 10.1M
4 RANS FV struct 48M —— RANS adapt 3M

FIGURE 3.2. Velocity profiles (left) on the centerline and (right) on the lipline
for the PPRIME nozzle example of Section 3.3.

The streamwise velocity profiles for four stations of the jet issued from the nozzle and the
mean streamwise velocity profiles along the centerline are compared to the experimental and
LES results obtained in [22]. The spurious numerical peaks in the velocity profiles, particularly
visible for the coarsest simulations, originate from the discontinuous nature of the DG spa-
tial discretization, for which in the proximity of interfaces of coarse elements, the polynomial
approximating the solution can display sharp shapes. In order to assess our DG h-adaptive re-
sults obtained with a RANS model, we use for reference simulation a RANS second-order FV
computation on a hexahedral structured mesh counting 48 millions of elements.

The meshes resulting from the third (4.5 millions of degrees of freedom), the fourth (6.9
millions of degrees of freedom) and the fifth adaptation steps (10.1 millions of degrees of freedom)
are very similar, indicating that mesh convergence for the RANS case has been attained.

The results reported on Figure 3.2 reveal that the RANS computations, conducted with either
the adaptive DG and structured FV methods, show a reasonable agreement with the LES results
inside the potential core of the jet and in its vicinity, but that they tend to underestimate the
centerline velocity of the jet for x1/dy > 6, leading to an earlier dissipation of the streamwise
axial velocity. This underestimation is a typical behavior of RANS models applied to jet flows,
see [1]. Nevertheless, the results of our adaptive simulation show a similar overall behavior as
those of the FV reference computation, achieving closer results to the LES and experimental
computations, with around 20% the number of degrees of freedom of the structured FV simula-
tion (10.1 vs 48 millions). Moreover, the use of an adaptive process circumvents the difficulties
posed by a classical, manual structured meshing process, especially when complex geometries
are considered.
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FIGURE 3.3. (From left to right) Velocity profiles on the axis, at x;/dy = 1,
z1/dy =5 and x1/dy = 10 in the PPRIME nozzle example of Section 3.3.
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F1GURE 3.4. (Top) Contour of the reconstructed Mach field in the PPRIME noz-
zle example of Section 3.3 for the initial mesh, containing 1.5 million degrees of

freedom; (middle) corresponding contour obtained with the final adapted mesh,

containing 10.1 million degrees of freedom; (bottom) snapshot of the instanta-
neous Mach number of the 10.1 million degrees of freedom mesh using unsteady
equations.

In Figure 3.3, we report radial velocity profile cuts at four locations in the mesh. At 21 /dy =1
the adaptive simulations match almost perfectly the LES and experimental results, and show
a large increase in accuracy with respect to the fine FV structured simulation. At z1/dy = 5,
our adaptive simulations are still very close to the LES and experimental results, but show a
slight over-prediction of the spreading rate of the jet, while at z1/dxy = 10 and x;/dy = 15 the
radial velocity profiles of RANS simulations show significant discrepancies with respect to the
experimental and LES reference results, but still perform slightly better than FV computations.
Eventually, we investigate the improvement of the jet flow prediction entailed by the use of
a hybrid RANS/LES approach on RANS-adapted hybrid prismatic/tetrahedral meshes. The
formulation of ZDES used in this work forces the whole interior part of the nozzle to act in
RANS mode, while the DES equations are solved in the rest of the domain, see [95].
The benefits that the unsteady simulation can bring to the finest mesh solution are shown
with red dotted lines in Figures 3.2 and 3.3. The velocity field of the unsteady simulation is
averaged over a period of 150 times the characteristic time of the flow (dn/Ujet). Despite being
a relatively coarse mesh with respect to the standards of unsteady turbulent computations, the
velocity profiles match more closely the experimental and LES references, thanks to the lower
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degree of modeling of turbulence that hybrid RANS/LES and classic LES models introduce
with respect to RANS. In Figure 3.4 we represent the steady Mach RANS solution on the initial
mesh and on the finest mesh, and an instantaneous snapshot of the Mach field on the finest
mesh performing an unsteady hybrid RANS/LES simulation. In the latter, a lower dissipation
of the jet velocity is observed.

To conclude, the present example demonstrates the improvement allowed by the proposed un-
structured metric-based RANS adaptation procedure on the flow field solution over simulations
relying on classical F'V methods, as well as the suitability of RANS-adapted meshes for unsteady
computations. In the meantime, the resolution of the unsteady adaptive process once a good
RANS solution has been obtained is considered essential in order to capture the unsteady fea-
tures of the flow. The extension of the present work to unstructured hp-adaptation for unsteady
turbulence models will be addressed in future research, taking advantage of the good dissipative
and dispersive properties of high-order schemes, which are better suited for turbulent unsteady
simulations.

4. An application of implicit domain meshing in shape optimization

This section illustrates how a coupling between the implicit domain remeshing feature introduced
in Section 2.5 and the level set framework allows to account for dramatic mesh evolution, in the
context of shape optimization.

4.1. A few generalities about shape and topology optimization

Shape and topology optimization is about finding the “best” shape with respect to mechanical,
geometrical and manufacturing specifications. Over the last decades, this discipline has been
raising an increasing enthusiasm within the academic and industrial communities, as the dra-
matic increase in the cost of raw materials calls for the optimization of the shape of mechanical
parts since the early stages of design; we refer to e.g. [6, 7, 8, 16] for further motivations and
comprehensive introductions to this field.

A typical shape optimization problem is of the form:

in J(2) s.t. C(2) <0 4.1
Inin J() s.t. C(2) <0, (4.1)
where

e () is the optimized shape, which is sought within the fixed computational domain D;

e J(Q) is a given performance criterion;

o C(Q) stands for a (collection of) constraint functional.

Usually, the functionals J(Q2) and C'(2) depend on the shape 2 via its mechanical behavior, that
is, mathematically, via a state ug, solution to a “physical” partial differential equation posed on
Q (for instance, the heat equation, the elasticity system, etc.).

The treatment of shape optimization problems of the form (4.1) by constrained optimiza-
tion algorithms requires a notion of derivative with respect to the domain. Here, we rely on
Hadamard’s boundary variation method [9, 62, 76, 94]; when combined with the so-called ad-
joint technique from optimal control theory, it allows to calculate a “shape gradient”, that
is, a descent direction, for a function F(€2) of the domain. The latter arises as a vector field
6 : R? — R3 such that, for small ¢ > 0:

F((Id+t0)(Q)) < F(Q);

intuitively, a “small” displacement of the boundary 92 in the direction pointed by the vector
field 6 results in a new domain (Id +¢6)(€2) with a slightly lower value of F'(£2).
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4.2. Body-fitted shape and topology optimization

Usually, large modifications of the shape are expected in the course of the resolution of a shape
and topology optimization problem of the form (4.1), making the use of Lagrangian strategies
such as those described in Section 2.4 unrealistic in this context.

Multiple alternatives have been thought of in order to circumvent this problem, and notably
the resort to the level set method outlined in Section 2.5, see [8] for the seminal contribution in
shape optimization.

Recently, this framework has been successfully combined with remeshing techniques, resulting
in a body-fitted shape optimization method, which features an exact mesh of the shape Q (and
of the complement D \ Q), see [5, 37, 50, 51]. In a nutshell, two complementary representations
of a shape €2 C D are available at each stage of the process:

e Meshed representation: On the one hand, Q (and thus D\ Q) is explicitly discretized in
the mesh 7" of D: T is a valid, conforming mesh of the total computational domain D,
which can be divided into two submeshes T and TD\Q of Q and D \ €, respectively.

e Level set representation: On the other hand, 2 is described as the negative subdomain
of a level set function ¢ : D — R defined at the vertices of T, see (2.1).

Dedicated numerical algorithms are then used to switch from one representation to the other.
When a meshed representation of () is available, a corresponding level set function ¢ : D — R
is calculated as the signed distance function to §2 at the vertices of the mesh 7, for instance by
using the fast marching method, see [90]. Conversely, when € is described by a level set function
¢ : D — R onamesh 7 of D, anew mesh 7 of D where  is explicitly discretized can be
obtained thanks to the methodology described in Section 2.5.

In the course of the numerical resolution of a shape optimization problem of the form (4.1),
each representation of the shape €2 is used depending on the performed operation, see Figure 4.1:

e The finite element analyses needed to calculate the state ug, and thereby a descent
direction # for the problem (4.1) can be conducted from the meshed representation of €.

e The motion of €2 to the next iterate (Id +t0)(2) can be realized with the level set repre-
sentation ¢ of €2, by solving the evolution equation (2.2) on the mesh 7.

This approach has the following benefits:

e Accurate mechanical calculations can be realized on the exact mesh Tq of the shape €2,
via the finite element method for instance. This mesh can be readily exported, and finite
element analyses can be carried out by using an external software application in a black-
box fashion; hence, this strategy totally decouples the update of € from the mechanical
analyses needed to evaluate its performance and the sensitivities of the optimization
functionals.

e Since the structural interface 02 is explicitly discretized at each step of the iterative
procedure, this body-fitted approach simplifies the evaluation of geometric and mechan-
ical quantities of interest near 92 (such as the perimeter, or the curvature of 9<, or the
normal stresses applied on 0f2).

e Since the level set method is used to realize the motion of the shape, dramatic evolutions
of shapes can be accounted for, including topological changes.
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FIGURE 4.1. Level set advection and body-fitted remeshing for interface track-
ing. (Left) initial level set defined at the vertices of a large conformal mesh and
associated velocity field; (middle) level set update using the Hamilton—Jacobi ad-
vection equation; (right) domain remeshed to fit the zero isovalue of the advected
level set function.

4.3. Numerical example: optimization of an elastic mechanical system

We illustrate the proposed approach with the optimization of the design of an elastic two-
component mechanical system. This numerical example was treated by using PISCO, a Research
and Development software platform devoted to topology optimization that is under active de-
velopment at IRT SystemX and Safran Tech. The industrial-grade solver Code_Aster! is used
to perform the finite element analyses needed to evaluate the physical criteria and the corre-
sponding sensitivities.

The considered setting is depicted on Figure 4.2. The computational domain D is composed
of two regions: an L-shaped support corresponding to a non optimizable region, which supports
the boundary conditions of the physical analysis, and a structural block, which is the optimized
domain, properly speaking. These are filled with two different linearly elastic materials (the
support being characterized by a higher Young’s modulus than the block) and they are linked
by rigid mechanical connections, represented on Figure 4.2 (b). Both regions are discretized using
linear tetrahedral elements while the rigid connections are accounted for by four discrete 1-order
elements. Dirichlet and linear sliding contact boundary conditions are prescribed on two regions
of the boundary 0D located respectively on the support and the block boundaries. Eventually,
two load cases are considered, which are applied on another region of 9D see Figure 4.2 (c,d).

The goal of the present experiment is to minimize the volume of the structural block (so as to
design a lighter structure) under four constraints: one on the compliance of the total structure
Q and one on the Von Mises stress field for each of the two considered load cases. The Von
Mises constraints are formulated using a p-norm aggregation technique which is quite classical
in stress-constrained topology optimization, see e.g. [48].

We rely on the body-fitted shape and topology optimization strategy introduced in Section 4.2
to solve this problem, starting with the full structural block of Figure 4.2(a) as initial shape.
The optimized design is depicted in Figure 4.3, and the associated displacement and Von Mises
stress fields for both considered load cases are reported in Figure 4.4. At convergence, all the
constraints are fulfilled and the weight of the assembly has been reduced by 52%.

"https://www.code-aster.org
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(c) (d)

FIGURE 4.2. (a) The two-component mechanical system test case considered in
Section 4.3; the non optimizable L-shaped support region is represented in orange
and the optimized block is in blue; (b) rigid connections linking both regions;
(c) clamped region of the device; (d) the surface supporting contact boundary
conditions is represented in green, and that submitted to loads is in light orange.

F1cuRE 4.3. (Left) optimized shape of the structural block in the example of
Section 4.3; (right) cut in the mesh of the computational domain D, divided into
material and void parts, in red and blue, respectively.

Note that a full remeshing of the structural system is carried out at each step of the opti-
mization process. As we have already emphasized, the employed body-fitted approach simplifies
greatly the definition and the evaluation of the physical criteria and sensitivities, since any finite
element solver can be used in a non intrusive fashion. On the other hand, the remeshing stages
involved in this strategy have admittedly a huge impact over the total computational cost of the
process. Thus, topology optimization would greatly benefit from the development of dedicated
parallel remeshing routines to target large-scale structural optimization challenges.
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FIGURE 4.4. (a) Displacement field for the first load case; (b) Von Mises stress
for the first load case; (c¢) displacement field for the second load case; (d) Von
Mises stress for the second load case.

5. Conforming remeshing using level set discretization for geophysical inverse
problem

5.1. Context and motivation

This section illustrates the contributions of local remeshing algorithms in geophysical modeling,
and more particularly in the management and the reduction of uncertainty over the identification
of geological interfaces.

The underground properties of the earth govern many natural or anthropic phenomena occur-
ring over multiple time scales, such as mineral element migration and concentration processes,
earthquake initiation and propagation, landslides, groundwater flow and contaminant transport,
hydrocarbon recovery, plume formation during COs sequestration, geothermal heat recovery,
etc. In particular, the representation of geological interfaces is a crucial aspect of the numerical
simulation of these processes, as these surfaces delimit regions containing different geological
materials (rock units) characterized by specific ranges of mineralogical and physical properties.
For example, in sedimentary basins, these rock units arise as layers separated by horizons and
can be described at multiple nested scales, as exemplified on Figure 5.1. The geometry of these
layers may contain challenging geometric features such as sharp creases or low-angle contacts
between surfaces, for instance when geological layers vanish laterally because some previously
deposited material has been eroded (see Figure 5.1(c)). Under the effect of tectonic forces and
subsurface fluids, cracks naturally present in the rock may grow as fractures, and eventually be-
come faults under the accumulation of tangential displacement, which results in possibly complex
juxtapositions of materials on either side of the fault, see e.g. Figure 5.1(d).

From the numerical point of view, the simulation of subsurface phenomena such as those
mentioned above relies on a model describing the features of the underground medium (and
notably the geophysical interfaces) at the scale of interest, which is then meshed and populated
with physical rock properties before the physical equations of interest are solved.
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Ficure 5.1. Example of a challenging geometrical configuration in a 3D geolog-
ical model, as discussed in Section 5. (a) Global view of a faulted stratigraphic
model; dark lines account for depth contours and colored lines in the upper hori-
zon represent stratigraphic unconformities; (b) cut-off view; (c) the low angle
contacts lines at the stratigraphic unconformities caused by erosion are displayed
in red; (d) view of how horizons (in transparency) are offset by faults, forming
small geometric features and low-angle intersections on cut-off lines on either
sides of each fault.

The aforementioned complex underground properties of the earth are therefore pivotal in these
computations. Unfortunately, they are generally inaccessible to direct observation. Rather, they
must be inferred from indirect data, such as surface measurements, borehole sample analyses or
in situ geophysical measurements and geophysical images. This is a highly challenging task, since
such data are sparse, ambiguous and insufficient to precisely characterize the domain. Hence,
geological knowledge is a key ingredient of the interpretation process and significant uncertainty
exists about the existence, location, connectivity and geometry of interfaces between different
rock units [101].

Numerical approaches based on the level set method (see Section 2.5) have raised a significant
interest within the geoscience modeling community, as a convenient tool to cope with these
uncertainties. One category of methods, referred to as “implicit structural modeling”, consists
in creating level set functions from typical interpretation points. In tetrahedral formulations [24,
54], this paves the way to the generation of meshes where the discontinuities under scrutiny are
explicitly discretized, as described in Section 2.5, which allows to conveniently manage faults
and other geological interfaces.

Other investigations have used perturbations of level set functions for generating alternative
geological models representing uncertainties [33, 103]. In the perspective of reducing the related
uncertainties, several deterministic or stochastic inverse methods have been formulated to take
into account indirect geophysical data [56, 63, 83], but most of them feature one single level set
function during the inversion process. Going further calls for inverting several and possibly finite
open interfaces while preserving their geological consistency [60, 101]. Moreover, even though
some Monte Carlo methods are available to address the uncertainty in the geometric configu-
ration [18, 28], their dissemination has been hampered by the difficulty to robustly automate
mesh generation for arbitrary configurations.

Using the level set method in combination with body-fitted tetrahedral meshes in the spirit
of Section 2.5 is a very attractive strategy to handle these requirements: it indeed combines
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geometric adaptivity, accuracy and versatility to several PDE discretization schemes such as the
finite element method or the control volume finite element method.

5.2. Two-dimensional numerical example: sensitivity of a two-phase Darcy flow with
respect to the existence and the geometry of fractures

In this section, we consider the 2D porous fractured network configuration depicted on Figure 5.2:
we assume 6 fracture intersections along two distinct observation lines have been located. As
often in geoscience practice, the performed observations do not contain the same amount of
information, neither are they equally reliable: some of these data provide the fracture position
and orientation while others provide at best an approximate insight into its position. From
these incomplete observations, spatially exhaustive scenarii are generated, representing possible
fracture configurations compatible with the observations. In the present 2D case, this task is
easily achieved by hand, but many sampling methods exist to generate this type of model, based
on statistical and/or physical reasoning, see for instance [19, 29, 38, 61, 102].

In each situation, the initial porous region is assumed to be filled with oil. We then simulate
the injection of water in the underground, from the lower left corner of the computational
domain €; both fluids are recovered in the upper right corner of 2. Assuming the fluids to be
incompressible and immiscible, the result of this experiment is predicted by the resolution of the

equation for the pressure P:
k- kroz

«@ Ha
which is complemented with the saturation equation for each phase «
a(S k-k
( a)_v'<fa ravp):qa'
ot o

Here, ¢ stands for the rock porosity; k is the rock permeability, Sy, (o, kro and f, are respec-
tively the saturation, viscosity, relative permeability and fractional velocity of the phase «, and
go is the volumetric source term. The numerical simulation solver is based on a control-volume
finite element approach, where fractures are represented as lower-dimensional mesh elements,
see [65, 73]. In this experiment, we assume for simplicity that the relative water permeability
is given by the square of the water saturation. The intact rock has a porosity of 0.2. Fractures
are assumed to be open (porosity of 1). The matrix and fracture permeabilities are taken equal
to 1071 m? and 107 m?, respectively. The viscosity for oil and water are 0.45 and 1 mPa.s,
respectively.

Each fracture is parametrized by its center, size and azimuth. Starting from an initial mesh
of the computational domain 2, the various fractures at stake are inserted one after another by
relying on the implicit surface meshing technology described in Section 2.5: briefly, the signed
distance field ¢ to the fracture is computed by a least-square optimization method [54]. A
subregion of the mesh of € is then defined from the fracture center and size to bound the
editing. Finally, the methodology of Section 2.5 is used to insert the zero level set of ¢ into the
portion of the mesh corresponding to this region.

This strategy presents numerous assets, when it comes to exploring multiple possible fracture
geometries and to appraising their impact on the flow. In particular, this iterative approach
allows to locally perturb an existing scenario (via a perturbation on the corresponding level
set function) in order to explore uncertainties over its geometry (such as the fracture shape or
position), while ensuring that the mesh features adequate element size and quality.

On the contrary, the opposite strategy consisting in meshing the fracture network at once
is highly challenging, since its very thin features inevitably lead to meshes containing a large
number of elements, or ill-shaped mesh elements, which either slows down simulations or affect
their stability. Admittedly, several simplification approaches have been proposed in this context,
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FIGURE 5.2. Several fracture network scenarii in the numerical example of Sec-
tion 5.2, together with the associated multiphase porous medium behaviors. The
spatial fracture observations and the associated uncertainties are displayed as
grey rectangles and ellipses along thin dotted lines. The fractures are bold dark
lines, which are explicitly discretized in the computational mesh. The color scale
shows the water saturation. Each graph shows the water fraction and produced
volume at the upper right corner, after injection of one pore volume (PVI) in the
lower left corner. The dashed ellipses highlight the changes between (a) and each
alternative scenario.

with the aim to approximate the target fracture geometry while preserving the mesh quality,
while retaining an affordable amount of elements, see [10, 53, 64, 77].

This simplification problem is significantly easier in the implicit framework where each fracture
is sequentially inserted as the 0 isosurface of the signed distance field ¢. Indeed, low quality mesh
elements can be prevented by setting the value of ¢ to 0 for the mesh nodes which are “too close”
to the inserted isosurface. To minimize the perturbation of the fracture shape, this form of snap
rounding is only applied to nodes located on other boundaries or at the edge of the subregion
of Q being edited, as later remeshing (Section 2.5) takes care of mesh quality issues elsewhere.

In order to illustrate the proposed workflow, we consider the example depicted on Figure 5.2:
the initial scenario depicted on Figure 5.2 (a) includes 6 and 4 fractures belonging to two fracture
sets of azimuth ca. 45° and 105°, respectively. In the configuration of Figure 5.2 (b), only one
fracture has been extended with respect to that in (a), leaving the rest of the model unchanged.
This minor perturbation has a limited effect on the production curves, and induces only a
moderate change in the saturation field. The scenario of Figure 5.2(c) involves a more drastic
change with respect to (a): one fracture is replaced by two fractures. This type of operation could
occur for instance in a reversible jump Monte Carlo Markov Chain transition [18]. As this change
affects the fracture connectivity, the impact on the production curves and on the saturation field
is significant: the water breakthrough at the production well occurs later, meaning that this
fracture configuration yields a better sweeping efficiency of the injected water. The scenario of
Figure 5.2(d) represents what could occur after multiple transitions from the initial model (a):
although the orientations and sizes are comparable, most fractures have been moved, removed
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or replaced. Interestingly, the production curves in the scenario (d) are similar to those of (a)
and (b). This illustrates the ill-posedness of this particular type of problems. This motivates the
use of stochastic inverse methods rather than deterministic optimization to address subsurface
uncertainty.

6. Dynamic and parallel mesh adaptation for premixed flame fronts and lig-
uid/gas interfaces

6.1. Dynamic mesh adaptation for material interfaces
6.1.1. Motivation

The numerical simulation of dynamic material surfaces in flows such as turbulent flame fronts
and liquid/gas interfaces has long been a thorny issue. One reason is that the reaction or interface
forces occur in very thin and moving layers around the surface, so that an accurate capture of
the latter requires a very fine mesh resolution in its vicinity. On the other hand, such interfaces
typically undergo dramatic displacements, spanning the whole computational domain, which
makes it impossible to adapt the mesh once for the whole simulation. Dynamic mesh adaptation
is a more realistic alternative to this unfeasible, brute-force approach. It consists in modifying
the mesh regularly so that it features a fine mesh size in the vicinity of the interface and a
coarser one away from it. Such a strategy is usually hindered by two factors:

(1) The huge increase in CPU cost entailed by the mesh adaptation process, which cancels
out the potential gain allowed by applying the numerical solver with a reduced number
of elements.

(2) Even though the cost of mesh adaptation is affordable, another challenge comes from the
compromise between the thickness of the refined layer around the interface (and thereby,
the size of the mesh) and the frequency at which remeshing is conducted.

This section presents solutions to reduce the overhead of dynamic mesh adaptation by relying on
a parallel implementation, and to find a compromise between the thickness of the refined layer
and the remeshing frequency. From the algorithmic viewpoint, we use the YALES2 flow solver [74]
for the numerical simulation of the physical problems at stake. This solver also implements a
version of the iterative remeshing-repartitioning algorithm relying on mmg to perform parallel
mesh adaptation.

6.1.2. A two-level parallel mesh adaptation method

As was presented in Section 2.6, the efficiency of parallel remeshing strategies carried out on dis-
tributed architectures (in terms of the quality of the resulting mesh, notably) crucially depends
on the ability of the procedure to modify the whole mesh 7. More precisely, in each submesh T
(processed on rank k), not only the regions lying “far” from the interface O between ranks, but
also those lying close to O have to be remeshed. While the modifications of the former regions
can be done in parallel by independent calls to the mesh adaptation library, the treatment of
the interface between ranks is much more delicate. As we have outlined in Section 2.6, several
strategies are available to tackle this issue, and that retained in the present work is the so-called
moving interface method. In a first step, the mesh is refined inside each rank, with respect to a
metric whose definition is detailed in Section 6.1.3, while leaving the regions near O untouched.
During this step, the target metric is interpolated from the old to the new mesh. This adaptation
step is therefore local and does not require any communication between the ranks. In a second
step, low-quality elements are sent from one rank to another. The scheduling of this movement
is driven by a constrained load balancing algorithm. This operation has to ensure that the grid
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FIGURE 6.1. Schematic of the two-level moving interface parallel adaptation
strategy developed in Section 6. The thin black lines represent the interfaces
between cell groups and the different colors correspond to as many ranks.

remains properly balanced from one rank to another, i.e. that all ranks have approximately the
same number of tetrahedra, and it has to enforce the movement of the interface. To achieve this,
one solution is to impose strong weights at the connections (or arcs) between the elements at the
interface. Thus, when minimizing the edge cut of the connectivity graph of the mesh 7, the load
balancing algorithm will be strongly enticed to place the new interface away from the previous
interface so as to avoid cutting heavy-weight connections. Once the elements have been moved
from one rank to another, the process can be repeated until convergence. This convergence is
achieved when the difference between the target and resulting metrics is below a threshold value
and when the element skewness does not exceed a limit value. The performances of this method
depend on the efficiency of each of the aforementioned operations, namely:

1) The sequential mesh adaptation library;

)
2) The interpolation of the data stored on the grid,;
3) The load balancing algorithm;

)

(
(
(
(

4) The cell and data transfer from one rank to another;

(5) The parallel connectivity reconstruction.

All these steps may limit the performance of the overall process when a large number of cores
is involved. In order to alleviate all the above potential limitations (except those concerning
the sequential mesh adaptation algorithm, which we assume to be sufficiently efficient in the
following), we rely on a two-level domain decomposition method. The latter is based on a
slight refinement of the general parallel remeshing principles exposed in Section 2.6, which is
illustrated in Figure 6.1: in a nutshell, most of the above tasks are actually conducted at a
coarser scale than that of the tetrahedra T € T, that of groups (hereafter referred to as cell
groups) composed of several thousands of tetrahedra. For instance, the load balancing algorithm
is applied to the connectivity graph of the cell groups instead of that of the cells, which allows
for a significant gain in CPU time as the latter graph is much lighter and easier to partition.
Likewise, the cell migration operation is performed cell group by cell group and it is combined
to automatic packing/unpacking with non-blocking send/receive calls to speed-up the transfer.
Finally, the interpolation of numerical quantities from the initial mesh to the modified one is done
at each sub-step, benefiting from the 2-level domain decomposition to locate the nearest source
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tetrahedron from a given destination element. The only drawback of this two-scale strategy is
that it requires additional merging and splitting algorithms in order to provide a large block
to the sequential remeshing software instead of small cell groups. However, this drawback does
not alter the performances of the complete workflow, and the overall gain far compensates this
overhead.

6.1.3. Choice of the metric
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FIGURE 6.2. Illustration of the construction of the size map involved in the
remeshing strategy of Section 6.1 (left) and its displacement (right).

The dynamic mesh adaptation of a moving material interface such as a flame or a liquid/gas
interface requires frequent remeshing steps. When using low-dissipation and low-dispersion nu-
merical schemes such as those used in Large-Eddy Simulation and Direct Numerical Simulation
of turbulent flows, the remeshing steps have to introduce as small numerical perturbations as
possible. The numerical perturbations entailed by the adaptation of a mesh 7 into a new mesh
T better suited to the further evolution of the interface mainly come from the interpolation er-
rors of numerical quantities defined on 7 onto T, whose values near the interface are of critical
importance. These perturbations can be made negligible if the remeshing occurs away from the
interface, i.e. if the mesh metric is kept constant near the interface under scrutiny and if the
tetrahedra nearby are frozen during this operation. Keeping the size prescription constant near
the interface and controlling its variation away from it leads to define the metric as in Figure 6.2:
it is set to Az, in a narrow band with thickness 2N, Az i, around the interface, and its gradi-
ent is bounded outside this region, so that the metric attains that of the initial coarse mesh “far”
from the interface. With this definition and as illustrated on the left-hand side of Figure 6.2,
when the interface moves of a distance less than N,Az iy, the size prescription changes where
either the old or the new metric shows linear variations, while keeping a constant value at the
interface location; this ensures an exact interpolation of the data within this protected zone.
The remeshing effort is therefore concentrated in the region where the metric changes most, i.e.
in the linear metric gradient zone.

6.2. Numerical example: application to the lean-premixed PRECCINSTA burner

The computational benefits of the proposed dynamic mesh adaptation strategy are first illus-
trated with the example of a semi-industrial lean-premixed burner, operating with a methane-air
premixing under atmospheric conditions. This burner, called PRECCINSTA, has been widely
used for model development and validations [15, 75]. In this burner, the turbulent flame is an-
chored to the injector thanks to a swirl motion, which creates large inner and outer recirculation
zones. A Large-Eddy Simulation with the same models and numerics as in [15] is performed
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FIGURE 6.3. Dynamic mesh adaptation in the PRECCINSTA burner test case
of Section 6.2: the instantaneous CO mass fraction and the heat release fields are
displayed, together with a slide of the 3D tetrahedral mesh.
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FIGURE 6.4. Comparison of the numerical simulations using static and dynamic
meshes at several resolutions in the PRECCINSTA burner example of Section 6.2.

with the help of the dynamic mesh adaptation strategy presented in Section 6.1. The results
are depicted in Figure 6.3; in there, a mesh resolution of 300 microns in the flame front and of
600 microns in the primary combustion zone are used. These coarse resolutions are chosen to
better highlight the metric definition. As the flame is highly unsteady due to flame/turbulence
interactions, the flame front displacement is tremendous and it eventually features topological
changes, as isolated burning pockets are created. The remeshing frequency is therefore piloted
by a Courant—Friedrichs—Lewy condition based on the displacement velocity, which ensures that
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FiGURE 6.5. Comparison of flame front curvature distribution for static and
dynamic meshes in the PRECCINSTA burner.

the flame front remains in the refined zone. The flame topology is rendered as a progress vari-
able iso-surface colored by the temperature in Figure 6.4. In there, the left- and right-hand side
subfigures correspond to two treatments of this simulation using static meshes (i.e. the compu-
tational mesh is adapted at the beginning of the process, and is then left untouched) containing
110 millions and 878 millions tetrahedra, respectively. In the center, the same situation is treated
with our dynamic mesh strategy; the computational mesh is obtained with the background mesh
of the 110 million cell mesh while the resolution at the flame front is the same as that of the
878 million cell mesh. The flame topology of the front obtained thanks to the dynamic strategy
features small-scale wrinkles similar to the refined static case (878M) while the total CPU cost
is around 4 times smaller. This observation is confirmed by the plot of the flame curvature
distribution in Figure 6.5. The distributions of the dynamic and of the refined static cases are
the same while the simulation based on the coarser static mesh exhibits smaller values of the
curvature.

6.3. Numerical example: application to the droplet impact on a cone

In this section, the benefits of dynamic mesh adaptation are illustrated with the simulation of
the impact of a water drop on a superhydrophobic cone characterized by its semi-angle 50° (a
situation which has been studied experimentally in [26, 47]). It is an interesting case as the drop
undergoes various topological changes after its impact on the cone: it subsequently takes the
shape of an attached ring before bouncing and breaking into a number of smaller droplets. The
modeling of the liquid/gas interface and that of the contact angle of 163° are detailed in [86].
The liquid/gas interface is captured with a conservative level set algorithm described in [41] and
the contact angle is imposed through a curvature modification at the contact line. The metric
definition follows the strategy exposed in Section 6.1.3, with a thickness of the refined zone
tailored so that 30 cells are in the initial drop radius. The results and the mesh are presented in
Figures 6.6 and 6.7. The experimental results are very well reproduced in terms of topology and
of break-up dynamics. Such simulation would be intractable without dynamic mesh adaptation.

157



G. BALARAC, F. BASILE, ET AL.

P Y Y

t=-0,30 ms = 3,00 ms t = 6,00 ms
t=901ms t=12,01 ms t= 15,03 ms

FIGURE 6.6. Impact of a water droplet on a superhydrophobic cone as considered
in Section 6.3.
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FIGURE 6.7. Dynamic mesh adaptation in the example of the impact of a water
droplet on a superhydrophobic cone in Section 6.3.
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