
MathematicS

In Action

François Alouges, Aline Lefebvre-Lepot & Philipp Weder
Optimal strokes for the 4-sphere swimmer at low Reynolds number in the regime
of small deformations
Volume 11 (2022), p. 167-192.
https://doi.org/10.5802/msia.23

© Les auteurs, 2022.
Cet article est mis à disposition selon les termes

de la licence Creative Commons attribution 4.0.
http://creativecommons.org/licenses/by/4.0/

C EN T R E
MER S ENN E

MathematicS In Action est membre du
Centre Mersenne pour l’édition scientifique ouverte

http://www.centre-mersenne.org/
e-ISSN : 2102-5754

https://doi.org/10.5802/msia.23
http://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/


MathematicS In Action
Vol. 11, 167-192 (2022)

Optimal strokes for the 4-sphere swimmer at low Reynolds
number in the regime of small deformations

François Alouges ∗
Aline Lefebvre-Lepot ∗∗

Philipp Weder ∗ ∗ ∗

∗ CMAP, Ecole polytechnique et CNRS, Institut Polytechnique de Paris, Route de Saclay,
91128 Palaiseau Cedex, France
E-mail address: francois.alouges@polytechnique.edu
∗∗ CMAP, Ecole polytechnique et CNRS, Institut Polytechnique de Paris, Route de Saclay,
91128 Palaiseau Cedex, France
E-mail address: aline.lefebvre@polytechnique.edu
∗ ∗ ∗ EPFL, Rue Louis-Favre 4, CH-1024 Ecublens, Switzerland
E-mail address: philipp.weder@epfl.ch.

Abstract

The paper deals with the optimal control problem that arises when one studies the 4 sphere artificial
swimmer at low Reynolds number. Composed of four spheres at the end of extensible arms, the swimmer is
known to be able to swim in all directions and orientations in the 3D space. In this paper, optimal strokes, in
terms of the energy expended by the swimmer to reach a prescribed net displacement, are fully described in
the regime of small strokes. In particular, we introduce a bivector formalism to model the displacements that
turns out to be elegant and practical. Numerical simulations are also provided that confirm the theoretical
predictions.

1. Introduction

Since the seminal paper by E. M. Purcell [19], the subject of understanding the swimming at
low Reynolds number has known a growing interest in the Physics community. A comprehensive
bibliography was given and reviewed in [14], and a more recent overview in [11]. The interested
reader will find there a wide view of the different directions that have been considered so far
together with future topics that need to be more thoroughly studied, to better understand the
peculiarities of this topic.

Among others is the subject of proposing and studying mechanisms that overcome the cel-
ebrated “Scallop Theorem” stated by Purcell and generalizing the approach of his “three-link
swimmer”. Several devices have been proposed (see for instance [7, 10, 18]).

In the meantime, the problem of “being able to swim”, i.e., does there exist a deformation
strategy that produces, when the interaction with the fluid is taken into account, a motion of
the swimmer, has been rephrased in terms of Control Theory, and tools have been introduced
to rigorously prove the controllability of several systems (see e.g. [3, 8, 16]).

Finding the best swimming strategies, or, in other words (using Lighthill’s efficiency defini-
tion [15]) the strokes that produce a given displacement for the least amount of expended energy,
is a problem of optimal control that has also been studied. A clear link is done with geometry
since optimal strokes can be seen as geodesics in a suitable sub-Riemannian space [2, 3].

Starting from mechanisms with two control variables (three-link swimmer [19], three-sphere
swimmer [18], Purcell rotator [10], Push-Me-Pull-You [7], etc.), the study of increasingly complex
systems has been proposed, e.g. in [2]. There, artificial swimmers are composed of rigid spheres
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with arms whose length can be controlled and it has been shown that it is possible to control both
the position and the orientation of the swimmer in 2D or 3D. For instance, a “plane swimmer”,
called SPr3, composed of three rigid spheres at the extremities of three arms making 120°
one to another can be controlled to move freely, both in translation and rotation, in the 2D
plane. Finding optimal periodic strokes for this plane swimmer, i.e. the ones that induce a given
displacement for the smallest amount of expanded energy, was realized in [4, 5] in the regime
of small deformations around a symmetric configuration. It is shown in particular that they are
planar ellipses in the space of shapes.

In this paper, we pursue the approach by considering the 4-sphere swimmer SPr4, still pro-
posed in [2], moving in the 3D space. This artificial swimmer possesses four rigid spheres at the
extremities of four arms that are free to elongate and retract. We show that, as a consequence
of the symmetric initial shape where all the arms have an equal length, the system can be com-
pletely understood, still in the regime of small deformations. In particular, we explicitly find
the optimal strokes, i.e. the ones that consume the least energy and that achieve a given dis-
placement (both translations and rotations). In general, the strokes are no longer planar ellipses
contrarily to what happens with control systems in lower dimensions. This is nevertheless the
case for very special constrained displacements that are also identified. Eventually, we give an
example of a displacement that can be achieved with non-unique optimal strokes, and provide
the reader with explicit formulas for the remaining unknown constants appearing in the system,
in the limit of large arms.

The paper is organized as follows. In Section 2 we describe the swimmer and write the control
problem making use of the symmetries of the artificial swimmer. We show in particular how
the formalism of bivectors can be used to express the optimal control problem in a concise and
elegant way. In Section 3, we give the main result of the paper, namely a complete understand-
ing of optimal periodic strokes for a given displacement. Strikingly enough, there is a subtle
distinction to make depending on whether the prescribed displacement is a simple bivector or
not. Eventually, Section 4 provides the reader with a series of numerical simulations and plots
of optimal strokes in different situations. These numerical results are obtained with parameters
that are given via an expansion of the system when the arms of the artificial swimmer are large
when compared to the diameter of the balls.

2. The 4-sphere swimmer

This section is devoted to the description of the 4-sphere swimmer SPr4, together with the
writing of the control problem to leading order in the regime of small deformations. Symmetries
of the swimmer are used to unveil the canonical structure of the control problem that, as we
shall see, only depends on a small number of parameters. In all this paper, we use the notation
N3 = {1, 2, 3} and N4 = {1, 2, 3, 4}.

2.1. The model

Let us consider the swimmer SPr4 proposed in [2]. To that end, let (S1, S2, S3, S4) be a regular
reference tetrahedron centered at c ∈ R3 such that dist(c, Si) = 1 for all i ∈ N4. The swimmer
consists of four balls (Bi)i∈N4 in R3 all of radius a > 0. Each ball Bi for i ∈ N4 is centered at
bi ∈ R3, which can freely move along the ray starting at c and passing through Si, see Figure 2.1.

This reflects the situation where the balls are linked to the center c by thin jacks that are able
to elongate and retract. However, the viscous resistance of these jacks is neglected and therefore
the fluid is assumed to permeate the entire open set R3 \

⋃4
i=1Bi. The balls do not rotate around

their arms which implies that the shape of the swimmer is completely determined by the four
lengths ζ1, ζ2, ζ3, and ζ4 of its arms measured from c to the center bi of each ball. Meanwhile,
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Small deformations of the 4-sphere swimmer

Figure 2.1. The reference tetrahedron and the parking 4-sphere swimmer (SPr4).

there are no restrictions on the global rotation of the swimmer around the center c, i.e. for fixed
arm lengths, the swimmer is considered to be a rigid body in a Stokesian fluid.

The geometrical configuration of the swimmer can be described by two sets of variables:
(1) The vector of shape variables ζ := (ζ1, ζ2, ζ3, ζ4) ∈ S := (

√
3/2a,+∞)4 ⊆ R4

+, each value
ζi being the length of the i−th arm, that we denote by ‖i in what follows. The lower
bound in the open interval is chosen such that the balls cannot overlap.

(2) The vector of position variables p = (c,R) ∈ P := R3× SO(3), which encodes the global
position and orientation of the swimmer in space.

To be more precise, we consider the reference tetrahedron convexly spanned by the four unit
vectors

z1 := (2
√

2/3, 0,−1/3), z2 := (−
√

2/3,−
√

2/3,−1/3),

z3 := (−
√

2/3,
√

2/3,−1/3), z4 := (0, 0, 1).

The position and orientation of the swimmer in R3 are then respectively described by the
coordinates of the center c ∈ R3 and the rotation R ∈ SO(3) of the swimmer with respect to the
reference orientation induced by the reference tetrahedron. Hence, if the arms are aligned with
the (zi)i∈N4 , then this rotation matrix equals the identity matrix Id3 ∈ SO(3). We therefore set
bi := c+ ζiRzi for the center of the ball Bi.

In [2] it is shown that the system SPr4 is fully controllable, i.e. both in shape ζ and position
p, using only the rate of shape change ζ̇. Using the assumptions of self-propulsion and negligible
inertia of the swimmer, the total viscous force and torque exerted by the surrounding fluid on
the swimmer must vanish. This permits to write the system as (for details see [2])

ṗ = F (R, ζ)ζ̇ :=
(
Fc(R, ζ)
FR(R, ζ)

)
ζ̇, (2.1)

or, componentwise, ċ = Fc(R, ζ)ζ̇ and Ṙ = FR(R, ζ)ζ̇.
In the preceding, denoting by L(V,W ) the set of linear maps between the vector spaces V

and W , we respectively have
Fc(R, ζ) ∈ L(R4,R3) and FR(R, ζ) ∈ L(R4, TR SO(3)) (2.2)
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where
TR SO(3) = {RM |M ∈ Skew3(R)}, (2.3)

denotes the tangent space1 to SO(3) at R. (We have denoted by Skew3(R) the space of real
skew-symmetric 3 × 3 matrices.) Notice that the first component Fc of F may be conveniently
represented as a 3× 4 matrix, while an analogous writing for FR leads to a 3× 3× 4 tensor.

In the spirit of [2] and [4], regarding the energy consumption of a swimming stroke we follow
the notion of swimming efficiency suggested by Lighthill [15] and we adopt the following notion of
optimality: energy minimizing strokes are the ones that minimize the kinematic energy dissipated
while trying to reach a given net displacement δp. Mathematically speaking, strokes are periodic
changes of shapes ζ ∈ H1

] (I,S), where the ] index stands for periodic functions, and we can
take, without further restriction I = [0, 2π]. The total energy dissipation due to the stroke ζ
given above can be evaluated through an adequate quadratic energy functional, c.f. [2],

G(ζ) :=
∫
I
G(ζ(t))ζ̇(t) · ζ̇(t)dt , (2.4)

where the energy density G ∈ C1(S,M4×4(R)) is a function with values in the space of symmetric
and positive definite matrices.

Finally, the optimal stroke problem can be written as: a displacement δp = (δc, δR)T being
given,

find inf
ζ∈H1

]

∫
I
G(ζ(t))ζ̇(t) · ζ̇(t)dt

under the constraints
∫
I
Fc(R(t), ζ(t))ζ̇(t)dt = δc and

∫
I
FR(R(t), ζ(t))ζ̇(t)dt = δR . (2.5)

2.2. Symmetries

In analogy to [4], we investigate the invariance of the system due to symmetries. For any initial
condition p0 := (c0, R0) ∈ P and any shape curve ζ ∈ C1(J,S) with J an open interval containing
zero, we denote by γ(c0, R0, ζ) : J → P the solution associated with the dynamical system

ṗ = F (R, ζ)ζ̇, p(0) = p0, (2.6)

as well as by γc(c0, R0, ζ) and γR(c0, R0, ζ) its projections on R3 and SO(3), respectively. There-
fore, for any t ∈ J , we have

γ̇(c0, R0, ζ)(t) = F (γR(c0, R0, ζ)(t), ζ(t))ζ̇(t). (2.7)

2.2.1. Translational and rotational invariance

The Stokes equations are invariant to translations. Moreover, changing the initial orientation,
i.e. applying a rotation to p0, in the dynamical system (2.6) leads to the same rotation applied
to the resulting trajectory p(t). Therefore, we may state the following symmetry property of the
control system (2.6) with respect to translations and rotations:
Condition 2.1 (Translational and rotational invariance). Let (c0, R0) ∈ R3 × SO(3) and ζ ∈
C1(J,S), where J is an open interval containing 0. Consider the solution to (2.6), γ(c0, R0, ζ) =
(γc(c0, R0, ζ), γR(c0, R0, ζ)). Then, one has

γc(c0, R0, ζ)(t) = c0 + γc(0, R0, ζ)(t) = c0 +R0γc(0, Id3, ζ)(t), (2.8)
and for the angular part of the solution

γR(c0, R0, ζ)(t) = R0γR(c0, Id3, ζ)(t) = R0γR(0, Id3, ζ)(t), (2.9)
at any point in time t ∈ J .

1For an introduction to manifolds, we refer to [12].

170



Small deformations of the 4-sphere swimmer

Corollary 2.2. The translational and rotational invariances given above immediately translate
into symmetry properties of the dynamical system (2.1). Namely, we have the formulas

Fc(R, ζ) = RFc(Id3, ζ) and FR(R, ζ) = RFR(Id3, ζ) . (2.10)

In what follows, we therefore simplify the notation by defining
F (ζ) = (Fc(ζ), FR(ζ)) := F (Id3, ζ) ∈ L(R4,R3 × Skew3(R)) . (2.11)

2.2.2. Permutation of two arms

Previous symmetries were linked with the fact that the Stokes equations are invariant with
respect to translations and rotations. They have nothing to do with the special parametrization
of the swimmer itself. Here, we instead pay attention to the geometry of the swimmer and
its symmetries to get further relations. To that aim, let us consider the effect of swapping
two arms on the generic solution of the dynamical system (2.6). Take i, j ∈ {1, 2, 3, 4} with
i 6= j, and let Pij ∈ L(R4,R4) denote the map that interchanges the i-th and j-th coordinates.
This physically corresponds to the swap of the arms ‖i and ‖j, if applied to the 4-dimensional
shape space S. In addition, let Sij denote the reflection of R3 that maps the arm ‖i onto the
arm ‖j, in the reference orientation Id3. Geometrical inspection of the reference tetrahedron
shows that Sij is always a reflection at a plane containing the remaining arms ‖k and ‖l. The
condition that follows is easily understood when one realizes that for a given shape history ζ(t),
γ(0, Id3, ζ)(t) and γ(0, Id3, Pijζ)(t) can be deduced one from another by applying the symmetry
Sij in space, as in Fig. 2.2. In other words, an observer watching the dynamics of γ(0, Id3, ζ)(t)
of SPr4 in a mirror in the reflection plane of Sij sees the dynamics γ(0, Id3, Pijζ)(t) of a
micro-swimmer obtained from SPr4 by swapping arms ‖i and ‖j. Therefore, the translational
part γc(0, Id3, Pijζ)(t) is obtained by applying the symmetry Sij to γc(0, Id3, ζ)(t), while the
rotational part γR(0, Id3, Pijζ)(t) is conjugated to γR(0, Id3, Pijζ)(t) under Sij .

Condition 2.3 (Swap of ‖i and ‖j)). With the preceding notation, we have
γc(0, Id3, Pijζ)(t) = Sijγc(0, Id3, ζ)(t) , (2.12)

and
γR(0, Id3, Pijζ)(t) = SijγR(0, Id3, ζ)(t)Sij , (2.13)

for all t ∈ J and all ζ ∈ C1(J,S).

This enables us to deduce symmetry relationships that F defined in (2.11) has to satisfy.

Proposition 2.4. Let (i, j) ∈ {1, 2, 3, 4}2, with i 6= j. Let χ ∈ S be a given shape and η ∈ R4

be any shape derivative. Condition 2.3 entails that F (χ) = (Fc(χ), FR(χ)) satisfies
Fc(Pijχ)Pij = SijFc(χ) . (2.14)

and
FR(Pijχ)(Pijη) = Sij [FR(χ)η]Sij . (2.15)

Proof. Let us consider J to be an open interval containing 0, and ζ ∈ C1(J,S) be a shape function
satisfying ζ(0) = χ and ζ̇(0) = η. We consider the trajectories γ(0, Id3, ζ)(t) and γ(0, Id3, Pijζ)(t)
and use Condition 2.3. Looking first at the translational component and differentiating with
respect to time t gives on the one hand

γ̇c(0, Id3, Pijζ) = γR(0, Id3, Pijζ)Fc(Pijζ)Pij ζ̇ ,
while on the other hand, using Condition 2.3, we have

γ̇c(0, Id3, Pijζ) = Sij γ̇c(0, Id3, ζ) = SijγR(0, Id3, ζ)Fc(ζ)ζ̇ .
Equating both results, using (2.13), and taking t = 0 leads to

Fc(Pijχ)Pijη = SijFc(χ)η .
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Figure 2.2. The reflection S12 applied to SPr4 in the reference orientation
corresponding to the swap of ‖1 and ‖2).

Since η can be arbitrarily chosen, this gives (2.14).
The proof of (2.15) follows the same lines. Namely, looking at the R-component of γ and

differentiating again in time leads to

γ̇R(0, Id3, Pijζ) = γR(0, Id3, Pijζ)FR(Pijζ)(Pij ζ̇) ,

and, using Condition 2.3, to

γ̇R(0, Id3, Pijζ) = Sij γ̇R(0, Id3, ζ)Sij = SijγR(0, Id3, ζ)[FR(ζ)ζ̇]Sij .

Equation (2.15) follows again from equating both right-hand sides, using (2.13) and taking
t = 0. �

Eventually, we investigate the symmetry properties of the energy density through an arm
swap Pij in the shape space. Due to the invariance of the energy dissipation under reflection, we
deduce, with the same notation as before, the following proposition, whose proof, which follows
the same arguments as in Proposition 2.4 is left to the reader.

Proposition 2.5. Let (i, j) ∈ {1, 2, 3, 4}2, with i 6= j, and (χ, η) ∈ S × R4. The energy density
G( · ) given in (2.4) satisfies

G(Pijχ)Pijη · Pijη = G(χ)η · η , (2.16)

or, equivalently,
PijG(Pijχ)Pij = G(χ) .
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2.3. Small stroke expansion

In this section, we approximate the energy (2.4) and the dynamics (2.6) in the range of small
strokes around a symmetric configuration, where all four arms have an identical length. In order
to proceed, following [2], we first consider the first-order expansion of the system in ζ and take
advantage of the symmetries described in the previous section to reveal the structure of the
different terms. Then, we write the corresponding linearized control equations.

We work in the neighborhood of the symmetric shape ξ0 = (l0, l0, l0, l0)T by considering
ζ := ξ0 + ξ. We consider deformations ξ around the initial and symmetric configuration ξ0,
that belong to the space Ḣ1

] (I,R4), i.e. the Sobolev space of 2π-periodic vector-valued functions
having first order weak derivative in L2(I,R4) and a vanishing average. In other words, we
consider the deformations to be small and zero-averaged deviations from ξ0. Here, I denotes the
closed interval [0, 2π] as before.

We first consider the energy (2.4) and set Gξ0(ξ) := G(ξ0 + ξ). In this small stroke regime, we
can approximate the energy density by G(ξ0 + ξ) = G0 + O(‖ξ‖L∞) = G0 + O(‖ξ‖Ḣ1

]
), where

G0 := G(ξ0) ∈M4×4(R) is symmetric and positive definite, and ‖ξ‖Ḣ1
]

= ‖ξ̇‖L2 . More precisely,

Gξ0(ξ) =
∫
I
G0 ξ̇(t) · ξ̇(t)dt+O(‖ξ‖3

Ḣ1
]
). (2.17)

From Proposition 2.5, noticing that Pijξ0 = ξ0 for all i, j ∈ N4 with i 6= j, we necessarily have
PijG0Pij = G0 , from which one easily finds G0,ii = G0,jj , and G0 is constant on the diagonal.
Looking at the extra diagonal terms reveals that G0 has the form

G0 =


ρ h h h
h ρ h h
h h ρ h
h h h ρ

 , (2.18)

for two parameters h and ρ. The matrix G0 can then be diagonalized as

G0 = UΛ0U
T , U := [τ1|τ2|τ3|τ4], Λ0 := diag(gi) (2.19)

where (τi)i∈N4 is the following orthonormal basis of R4, made of eigenvectors of G

τ1 = 1√
6(−2, 1, 1, 0)T , τ2 := 1√

2(0, 1,−1, 0)T , τ3 = 1
2
√

3(1, 1, 1,−3)T , τ4 := 1
2(1, 1, 1, 1)T ,

and the (gi)i∈N4 are the corresponding eigenvalues

g1 = g2 = g3 = ρ− h, g4 = ρ+ 3h .

Note that, G0 being positive definite, we also have ρ > max(h,−3h).
Let us now focus on the equations of the dynamics (2.6). First, let us recall that from rotational

invariance, we obtained in (2.10), (2.11) that Fc and FR can be factorized as Fc(R, ζ) = RFc(ζ)
and FR(R, ζ) = RFR(ζ), respectively, with

Fc(ζ) ∈ L(R4,R3) and FR(ζ) ∈ L(R4,Skew3(R)) .

Similarly as before, we set Fc,ξ0(ξ) := Fc(ξ0 +ξ) and FR,ξ0(ξ) := FR(ξ0 +ξ). It has been shown
in [2] that F is an analytic function, and we may therefore consider the first-order expansions
in ξ:

Fc,ξ0(ξ)η = A0η +
∑
p∈N3

(Apη · ξ)êp + o(|ξ|)η , (2.20)

FR,ξ0(ξ)η = B0η +
∑
p∈N3

(Bpη · ξ)Lp + o(|ξ|)η , (2.21)
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where we have denoted by (êp)p∈N3 the canonical basis vectors of R3 and by L := (L1, L2, L3)
the following basis of Skew3(R):

L1 =

 0 0 0
0 0 −1
0 1 0

 , L2 =

 0 0 1
0 0 0
−1 0 0

 , L3 =

 0 −1 0
1 0 0
0 0 0

 . (2.22)

Notice that in (2.20), (2.21) the objects have different structures. Namely, A0 ∈ M3×4(R),
B0 ∈ L(R4,Skew3(R)), while the matrices Ap, Bp are in M4×4(R) for p ∈ N3. They represent
the first order derivative of Fc,ξ0 and FR,ξ0 at ξ = 0 (for example, (Ap)ij = ∂ξi

(Fc,ξ0)pj(0)). In
order to reveal the structure of (Ap)0≤p≤3 and (Bp)0≤p≤3, we transfer the symmetry properties
(2.14), (2.15) satisfied by F to the first-order expansions (2.20), (2.21). The proof of these
relations is left to the reader.

Lemma 2.6. The matrices (Ap)0≤p≤3 and (Bp)0≤p≤3 defined in (2.20), (2.21) satisfy the fol-
lowing symmetry properties for all indices i, j ∈ N4 :

A0η = SijA0Pijη, ∀ η ∈ R4 (2.23)
B0η = Sij [B0Pijη]Sij , ∀ η ∈ R4 (2.24)∑

p∈N3

(ApPijξ · Pijη) êp = Sij
∑
p∈N3

(Apξ · η) êp, ∀ ξ, η ∈ R4 (2.25)

∑
p∈N3

(BpPijξ · Pijη) Lp = Sij
∑
p∈N3

(Bpξ · η) LpSij , ∀ ξ, η ∈ R4 . (2.26)

The following sections aim at finding the structures of both (Ap)0≤p≤3 and (Bp)0≤p≤3 that
are consequences of these symmetry relations.

2.3.1. Zeroth order terms

The structure of A0 and B0 is investigated in the following, based on identities (2.23) and (2.24).
Let (i, j, k, l) ∈ N4 be any permutation of (1, 2, 3, 4). Writing (2.23) with η = ek, we obtain:

A0ek = SijA0Pijek = SijA0ek

so that A0ek is an eigenvector associated with the eigenvalue 1 of Sij . Recall that Sij is the
reflection that maps the arm ‖i onto arm ‖j, leaving arms ‖k and ‖l invariant. This implies that
A0ek ∈ span{zk, zl}, but, since l can be otherwise arbitrarily chosen, we deduce that A0ek = α0

kzk
for some α0

k ∈ R. This is true for all k ∈ N4.
Writing now (2.23) with η = ei leads to

α0
i zi = A0ei = SijA0Pijei = SijA0ej = α0

jSijzj = α0
jzi ,

which implies that the (α0
i )i∈N4 are, in fact, equal. Finally, we get A0 = α0 (z1|z2|z3|z4) which

can also be written as
A0 = −3

√
3α0 [τ1|τ2|τ3]T , (2.27)

where (τi)i∈N4 is the orthonormal basis of eigenvectors of G0 defined in (2.19), and α0 ∈ R.
As far as B0 is concerned, we again consider any permutation (i, j, k, l) of (1, 2, 3, 4), and

write (2.24) with η = ek. We obtain:
B0ek = Sij [B0ek]Sij .

Since B0ek ∈ Skew3(R), it may be decomposed using the basis L given in (2.22) as B0ek =∑
p∈N3 β

k
pLp so that we have, for all u ∈ R3:

∑
p∈N3

βkpLpu = Sij

∑
p∈N3

βkpLp

Siju .
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Let us define βk =
∑
p∈N3 β

k
p êp ∈ R3 (vector in R3 whose coordinates are the ones of B0ek in

L). Since Lpu = êp × u for any u in R3, we obtain

βk × u = Sij(βk × Siju) ∀ u ∈ R3 .

Using the identity Sij(v × w) = −(Sijv)× (Sijw) for any v, w ∈ R3 we finally get

βk × u = (−Sijβk)× u ∀ u ∈ R3

which implies that βk ∈ span{zk, zl}⊥. The index l 6= k being arbitrary, we obtain that βk = 0,
and consequently, B0ek = 0. Eventually, since k is arbitrary, we finally deduce

B0 = 0 .

2.3.2. First order terms

In order to understand the structure of the matrices (Ap)p∈N3 and (Bp)p∈N3 , we split them into
their symmetric and skew-symmetric parts, namely

A−p = 1
2 [Ap −ATp ], B−p = 1

2 [Bp −BT
p ], p ∈ N3 ,

A+
p = 1

2 [Ap +ATp ], B+
p = 1

2 [Bp +BT
p ], p ∈ N3 .

In view of (2.25) and (2.26) they satisfy the identities (for all i, j ∈ N4, i 6= j)∑
p∈N3

(
A±p Pijξ · Pijη

)
êp = Sij

∑
p∈N3

(
A±p ξ · η

)
êp, ∀ ξ, η ∈ R4 , (2.28)

∑
p∈N3

(
B±p Pijξ · Pijη

)
Lp = Sij

∑
k∈N3

(
B±p ξ · η

)
LpSij , ∀ ξ, η ∈ R4 . (2.29)

We also introduce for all m,n ∈ N4

A±mn :=
∑
p∈N3

(A±p em · en)êp ∈ R3 and B±mn :=
∑
p∈N3

(B±p em · en)êp ∈ R3

that store the (m,n)-entry of the three matrices (A+
p )p∈N3 and similarly for (A−p )p∈N3 , (B+

p )p∈N3 ,
and (B−p )p∈N3 . For the latter, we also observe that for any u ∈ R3 and p ∈ N3, since Lpu = êp×u,
one has

B±mn × u =
∑
p∈N3

(B±p em · en)Lpu . (2.30)

Study of the skew-symmetric parts A−p and B−p , p ∈ N3. The matrices (A−p )p∈N3 , being
skew-symmetric, have vanishing diagonal coefficients. For the extradiagonal coefficients (i, j)
with i 6= j, we write (2.28) with ξ = ei and η = ej . Using the fact that A−p is skew-symmetric
leads to

A−ij = −SijA−ij
which implies A−ij ∈ span{zk, zl}⊥, or, equivalently A−ij = α−ijzk × zl for some α−ij ∈ R. This is
true for any choice of couple (i, j). Notice that α−ij is unique up to the choice of a sign that
depends on the order that we choose for the two vectors zk and zl in the cross product. We may
therefore fix this sign by assuming furthermore that sgn(i, j, k, l) = 1. Now, we rewrite (2.28)
with ξ = ei and η = ek and obtain A−jk = SijA−ik, or

α−jkzi × zl = Sij(α−ikzl × zj) = −α−ik(Sijzl)× (Sijzj) = α−ikzi × zl ,

from which we deduce that the α−ij are all equal to α− ∈ R. (Notice that sgn(j, k, i, l) =
sgn(i, k, l, j) = sgn(i, j, k, l) = 1.)
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By explicitly calculating the cross products zi × zj , we find that the corresponding matrices
(A−p )p∈N3 can be expressed with respect to α− as

A−1 = α−
(

0 3 3 2
−3 0 0 −1
−3 0 0 −1
−2 1 1 0

)
, A−2 =

√
3α−

(
0 1 −1 0
−1 0 −2 −1
1 2 0 1
0 1 −1 0

)
, A−3 = 2

√
2α−

(
0 0 0 −1
0 0 0 −1
0 0 0 −1
1 1 1 0

)
. (2.31)

For the matrices B−p , p ∈ N3, we again consider any fixed permutation (i, j, k, l) of (1, 2, 3, 4)
and write (2.29) with ξ = ek and η = el. We obtain, using (2.30) for any u ∈ R3

B−kl × u = Sij(B−kl × Siju) = (−SijB−kl)× u .
This permits us to deduce that B−kl = β−kl zk × zl. Similarly, taking ξ = ej and η = el leads
to B−il = −SijB−jl giving that the coefficients β−kl are all identical. We thus deduce that B−kl =
β− zk × zl, for some β− ∈ R and any k 6= l ∈ N4.

From a matricial point of view, this now yields

B−1 = β−
( 0 1 −1 0
−1 0 −2 3
1 2 0 −3
0 −3 3 0

)
, B−2 =

√
3β−

( 0 −1 −1 2
1 0 0 −1
1 0 0 −1
−2 1 1 0

)
, B−3 = 2

√
2β−

(
0 1 −1 0
−1 0 1 0
1 −1 0 0
0 0 0 0

)
. (2.32)

Study of the symmetric parts A+
p and B+

p , p ∈ N3. The study of the symmetric parts
follows the same lines as for the skew-symmetric ones. First, we write (2.28) with ξ = ei and
η = ej and use the fact that A+

p is symmetric. This leads to

A+
ij = SijA+

ij

which implies A+
ij ∈ span{zk, zl}. We similarly get A+

ij = SklA+
ij which shows that A+

ij = α+
ij(zk +

zl) for α+
ij ∈ R. To prove that all the constants are equal, we finally write

α+
ik(zj + zl) = A+

ik = SjkA+
ij = Sjkα

+
ij(zk + zl) = α+

ij(zj + zl) ,

so that there exists α+ ∈ R such that α+
ij = α+ for all i 6= j.

Concerning the diagonal terms A+
ii , we find in a similar way that A+

ii ∈ span{zi, zj} ∩
span{zi, zk} ∩ span{zi, zl} so that there exists ᾱ+

i ∈ R such that A+
ii = ᾱ+

i zi and we prove
as before that all the constants are equal:

ᾱ+
j = A+

jj · zj = SijA+
jj · Sijzj = A+

ii · zi = ᾱ+
i .

Hence, there exists ᾱ+ ∈ R such that ᾱ+
i = ᾱ+ for all i in N4.

It now remains to identify the matrices B+
p . To do so, we use the same symmetries to check

that the vectors B+
ij being proportional to both zk × zl and zi × zj must vanish. Similarly, we

can prove that B+
ii = 0 for all i. Finally, we obtain the following expressions for the symmetric

parts of the matrices:

A+
1 =

√
2

3 ᾱ+
(

2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0

)
+
√

2
3 α+

( 0 −1 −1 −2
−1 0 2 1
−1 2 0 1
−2 1 1 0

)
, (2.33)

A+
2 =

√
2
3 ᾱ

+
( 0 0 0 0

0 −1 0 0
0 0 1 0
0 0 0 0

)
+
√

2
3α

+
(

0 1 −1 0
1 0 0 1
−1 0 0 −1
0 1 −1 0

)
, (2.34)

A+
3 = 1

3 ᾱ
+
(
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 3

)
+ 2

3α
+
( 0 1 1 −1

1 0 1 −1
1 1 0 −1
−1 −1 −1 0

)
, (2.35)

B+
1 = B+

2 = B+
3 = 0.

To finish this section, we conclude that the dynamics of SPr4 to first order on the amplitude
of the strokes around ξ0 only depends on the five parameters α0, α−, α+, ᾱ+ and β− that appear
in the preceding formulas. We will compute those parameters explicitly in Section 4.1, in the
asymptotic regime of large arms l0 compared to the diameter a of the balls.
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2.3.3. The linearized control equations

We know from the previous section, that the control system (2.1) governing the evolution of
SPr4 around ζ = ξ0 (i.e. around ξ = 0), up to higher order terms, simplifies to{

ċ = RA0ξ̇ +R
∑
p∈N3(Apξ̇ · ξ)êp ,

Ṙ = R
∑
p∈N3(Bpξ̇ · ξ)Lp .

(2.36)

In particular, fixing ξ ∈ Ḣ1
] (I,R4) and defining Γ(t) :=

∑
p∈N3(Bpξ̇(t)·ξ(t))Lp : I → Skew3(R),

the dynamics of R can be written as an ordinary differential equation on the Lie group SO(3):{
Ṙ(t) = R(t)Γ(t) ,
R(0) := R0 .

(2.37)

To simplify equations (2.36) further, we are interested in the solution of (2.37) in the regime
of a small stroke ξ ∈ Ḣ1

] (I,R4) or equivalently in the regime of uniformly small in time matrices
Γ. Intuitively, the solution R of (2.37) should not deviate too much from the initial value R0
if the vector field Γ driving the differential equation stays small. More precisely, from [1, p. 31]
we have

R(t) = R0

(
Id3 +

∫ t

0
Γ(τ)dτ

)
+O(‖ξ‖4

Ḣ1
]
) as ‖ξ‖Ḣ1

]
↓ 0 .

Hence, choosing R0 = Id3 yields in particular the following approximations for any t ∈ I :
ċ =

(
Id3 +

∫ t

0
Γ(τ)dτ

)A0ξ̇ +
∑
p∈N3

(Apξ̇ · ξ)êp

+O(‖ξ‖4
Ḣ1

]
) ,

Ṙ =
(

Id3 +
∫ t

0
Γ(τ)dτ

) ∑
p∈N3

(Bpξ̇ · ξ)Lp +O(‖ξ‖4
Ḣ1

]
) ,

(2.38)

for ‖ξ‖ ↓ 0. We now integrate both previous relations over I. Using that 〈A0ξ̇〉 vanishes due to
the periodicity of the stroke ξ, together with the fact that the term involving Γ is of order 2 in
ξ, namely

∃ C > 0, such that ∀ t ∈ [0, 2π],
∣∣∣∣∫ t

0
Γ(τ) dτ

∣∣∣∣ ≤ C‖ξ‖2Ḣ1
]
.

Denoting by 〈f〉 := (2π)−1 ∫
I f(s)ds the average of f ∈ L2(I), we obtain the following result:

Proposition 2.7. For any ξ ∈ Ḣ1
] (I,R4), in a neighborhood of 0 ∈ Ḣ1

] (I,R4), the following
estimates hold:

δc(ξ) = 2π
∑
p∈N3

〈Apξ̇ · ξ〉êp +O(‖ξ‖3
Ḣ1

]
),

δR(ξ) = 2π
∑
p∈N3

〈Bpξ̇ · ξ〉Lp +O(‖ξ‖4
Ḣ1

]
).

We also note that 〈Apξ̇ · ξ〉 = 〈A−p ξ̇ · ξ〉 and 〈Bpξ̇ · ξ〉 = 〈B−p ξ̇ · ξ〉 for all p ∈ N3, so that the
constraint can be written, to leading order:

δc(ξ) = 2π
∑
p∈N3

〈A−p ξ̇ · ξ〉êp and δR(ξ) = 2π
∑
p∈N3

〈B−p ξ̇ · ξ〉Lp . (2.39)

2.3.4. The bivector formalism

We now reformulate the optimization problem (2.5), and more precisely the constraints, to
leading order, in the framework of bivectors. For details about bivectors, we refer to [17], but
in a nutshell, one can think of (simple) bivectors of R4 as oriented plane segments, which are
obtained from the exterior product u ∧ v of two vectors u, v ∈ R4. Linear combinations of such
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simple bivectors form a linear space of dimension six denoted by
∧2 R4, to which we will later

identify the space of (sufficiently small) net displacements R3×Skew3(R). This approach allows
us to handle both translations and rotations in a single formalism and will prove extremely
useful for the understanding of the structure of the solutions. Recall that we have denoted by
(e1, e2, e3, e4) the canonical basis of R4, then (e12, e13, e14, e23, e24, e34) forms a basis of

∧2 R4,
where we have set eij := ei ∧ ej to simplify notation. The space

∧2 R4 can be equipped with
a scalar product by linearly extending the Gramian determinant, i.e. for two simple bivectors
u ∧ v and u′ ∧ v′ we set

(u ∧ v) : (u′ ∧ v′) = det
(
u · u′ u · v′
v · u′ v · v′

)
,

and then we extend to the entire space by linearity. Subsequently, we also have a norm on the
space

∧2 R4 that we denote by | · |. In particular, we have the identities

(u ∧ v) : eij = uivj − ujvi , (2.40)

and
|u ∧ v|2 = |u|2|v|2 − (u · v)2 ≤ |u|2|v|2, (2.41)

with equality if and only if u and v are orthogonal.
We emphasize at this point that not every bivector of R4 is simple, i.e. can be represented

as a single wedge product u ∧ v of two vectors u and v of R4. For example, the bivector e1 ∧
e2 + e3 ∧ e4 ∈

∧2 R4 cannot be written as a single wedge product. It is however true, as the
preceding example suggests, that every bivector of R4 can be decomposed into the sum of at
most two orthogonal simple bivectors. Moreover, this decomposition is unique, meaning that the
pair of simple bivectors forming the sum is uniquely defined, if and only if the norms of both
summands are different. On the other hand, in the non-unique case there are infinitely many such
decompositions, which is connected to the relationship between bivectors and rotations [17]. This
fact will play a crucial role in the characterization of the optimal control curves. However, note
that this decomposition property is not restricted to the standard scalar product but extends
to any choice of scalar product in R4, e.g. the one induced by G0.

Bivectors can also be identified with skew-symmetric matrices. Indeed, we may define the
bijective map Ω :

∧2 R4 → Skew4(R) by linearly extending on all
∧2 R4 the map defined on

simple bivectors
Ω(u ∧ v) = uvT − vuT , ∀ (u, v) ∈ R4 × R4 . (2.42)

This gives us a way to represent any bivector by a skew-symmetric matrix, and vice versa. We
deduce from (2.42) that

∀ A ∈M4×4(R), ∀ (u, v) ∈ R4, Ω(Au ∧Av) = AΩ(u ∧ v)AT . (2.43)

Eventually, it is immediate to check that for all u, v, u′, v′ ∈ R4 that

Ω(u ∧ v)u′ · v′ = v′T (uvT − vuT )u′

= (v′ · u)(v · u′)− (v′ · v)(u · u′)
= −(u ∧ v) : (u′ ∧ v′)

which implies that

∀ ω ∈
2∧
R4, ∀ u′, v′ ∈ R4, Ω(ω)u′ · v′ = −ω : (u′ ∧ v′) . (2.44)

A short calculation shows that the skew-symmetric parts A−p and B−p of the matrices Ap and
Bp may be represented as simple bivectors through the mapping Ω as

A−1 = −2
√

6α−Ω(τ1 ∧ τ4) , A−2 = −2
√

6α−Ω(τ2 ∧ τ4) , A−3 = −2
√

6α−Ω(τ3 ∧ τ4) , (2.45)
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and
B−1 = −2

√
6β−Ω(τ2 ∧ τ3) , B−2 = −2

√
6β−Ω(τ3 ∧ τ1) , B−3 = −2

√
6β−Ω(τ1 ∧ τ2) . (2.46)

The constraints (2.39) then become

δc1 =
∫
I
A−1 ξ̇(t) · ξ(t) dt = 2

√
6α−

∫
I
(ξ̇(t) ∧ ξ(t)) : τ14 dt (2.47)

and similarly

δc2 = 2
√

6α−
∫
I
(ξ̇(t) ∧ ξ(t)) : τ24 dt , δc3 = 2

√
6α−

∫
I
(ξ̇(t) ∧ ξ(t)) : τ34 dt ,

δR1 = 2
√

6β−
∫
I
(ξ̇(t) ∧ ξ(t)) : τ23 dt , δR2 = 2

√
6β−

∫
I
(ξ̇(t) ∧ ξ(t)) : τ31 dt , (2.48)

δR3 = 2
√

6β−
∫
I
(ξ̇(t) ∧ ξ(t)) : τ12 dt ,

using the notation τij := τi ∧ τj .
Therefore, the isomorphism sending the basis (ê1, ê2, ê3, L1, L2, L3) of R3×Skew3(R) onto the

specific orthonormal basis
(τ14, τ24, τ34, τ23, τ31, τ12) (2.49)

of
∧2 R4, allows us to rewrite the constraints in (2.47), (2.48) as

Λ−1δp =
∫
I
ξ̇(t) ∧ ξ(t) dt, (2.50)

where Λ = 2
√

6 diag(α−, α−, α−, β−, β−, β−).
Finally, the optimal control problem (2.5) can be rewritten, to first order, using the bivector

formalism as: the displacement δp ∈
∧2 R4 being given,

find inf
ξ∈Ḣ1

]

∫
I
G0ξ̇(t) · ξ̇(t) dt under the constraint

∫
I
ξ̇(t) ∧ ξ(t) dt = Λ−1δp . (2.51)

3. The main result

In this section, we present the main result of this paper, which solves the optimization prob-
lem (2.51), and we lay out the proof thereof.

3.1. Statement of the theorem

Theorem 3.1. Let ω ∈
∧2 R4. We consider the following optimization problem:

Find inf
ξ∈Ḣ1

]

∫
I
G0ξ̇(t) · ξ̇(t) dt under the constraint

∫
I
ξ̇(t) ∧ ξ(t) dt = ω . (3.1)

Then, we distinguish the following two cases:

(A) The bivector ω is simple. Then, any minimizer ξ ∈ Ḣ1
] (I,R4) of (3.1) is of the form

ξ(t) = 1√
2π

(sin(t)u+ cos(t)v) ,

where ω = u ∧ v, u and v are G0-orthogonal and of the same G0-norm.

(B) The bivector ω is not simple. Then, any minimizer ξ ∈ Ḣ1
] (I,R4) of (3.1) is of the form

ξ(t) = 1√
2π

(
sin(t)u1 + cos(t)v1 + 1√

2
sin(2t)u2 + 1√

2
cos(2t)v2

)
,
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where ω = u1 ∧ v1 +u2 ∧ v2, the vectors u1, v1, u2 and v2 are pairwise G0-orthogonal, the
two pairs of vectors (u1, v1) and (u2, v2) are respectively of the same G0-norm and they
satisfy furthermore the condition

|G1/2
0 u1 ∧G1/2

0 v1| ≥ |G1/2
0 u2 ∧G1/2

0 v2|.

The proof will be decomposed in the remaining of this section. We split it in three different
steps, namely, the existence of optimal periodic strokes, and the proofs of parts (A) and (B),
respectively.

3.2. Proof of Theorem 3.1 – Existence of optimal periodic strokes

We first show that the solution of the minimization problem (3.1) exists. This is a consequence
of the direct method of the calculus of variations. Indeed, let us consider the set of strokes
satisfying the constraints

H =
{
ξ ∈ Ḣ1

] (I,R4) such that
∫
I
ξ̇(t) ∧ ξ(t) dt = ω

}
.

Assuming for the time being thatH 6= ∅, the existence of a minimizer for the energy is guaranteed
since, from the Rellich theorem, the constraint is continuous under weak H1 convergence.

In order to prove that the set H is non-empty, we recall that any bivector ω can be written
as

ω = u1 ∧ v1 + u2 ∧ v2, (3.2)
where the four vectors u1, v1, u2, v2 may be furthermore assumed to be orthogonal. Note that in
the case of a simple bivector, one has u2 = v2 = 0. Consider the stroke

ξ(t) = 1√
2π

(
sin(t)u1 + cos(t)v1 + 1√

2
sin(2t)u2 + 1√

2
cos(2t)v2

)
.

We now compute∫
I
ξ̇(t) ∧ ξ(t) dt = 1

2π

∫
I
(cos(t)u1 − sin(t)v1) ∧ (sin(t)u1 + cos(t)v1) dt

+ 2
2π

∫
I

1√
2

(cos(2t)u2 − sin(2t)v2) ∧ 1√
2

(sin(2t)u2 + cos(2t)v2) dt

= u1 ∧ v1 + 2u2 ∧ v2
2

= ω ,

from which we deduce that ξ ∈ H.

3.3. Proof of Theorem 3.1 – Part (A)

We now consider the case where the displacement ω is a simple bivector that can be written as
ω = u ∧ v where u and v are two G0−orthogonal vectors, with the same G0−norm.

Considering the change of variable η = G
1
2
0 ξ, we have, on the one hand∫

I
G0ξ̇ · ξ̇ dt =

∫
I
|η̇|2 dt ,

while, on the other hand, the constraint satisfies, using (2.43)

Ω(ω) = Ω
(∫

I
ξ̇ ∧ ξ dt

)
= Ω

(∫
I
G
− 1

2
0 η̇ ∧G−

1
2

0 η dt
)

= G
− 1

2
0 Ω

(∫
I
η̇ ∧ η dt

)
G
− 1

2
0 .
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Applying again (2.43) to ω = u ∧ v, namely G
1
2
0 Ω(ω)G

1
2
0 = Ω(G

1
2
0 u ∧ G

1
2
0 v), we deduce that the

minimization problem can equivalently be rewritten as :

Find inf
η∈Ḣ1

]

∫
I
|η̇(t)|2 dt under the constraint

∫
I
η̇(t) ∧ η(t) dt = (G1/2

0 u) ∧ (G1/2
0 v) . (3.3)

Now, we set ω′ = (G1/2
0 u)∧ (G1/2

0 v) and notice that the vectors G
1
2
0 u and G

1
2
0 v are orthogonal

and possess the same norm. Let η ∈ Ḣ1
] (I,R4) be a stroke that satisfies the constraint

∫
I η̇(t) ∧

η(t)dt = ω′. We emphasize that

|ω′| ≤
∫
I
|η̇‖η| dt ≤ 1

2

∫
I
|η̇|2 dt+ 1

2

∫
I
|η|2 dt ≤

∫
I
|η̇|2 dt

due to Poincaré’s inequality ∫
I
|η|2 dt ≤

∫
I
|η̇|2 dt ,

since η is a 2π periodic and null averaged curve. The energy
∫
I |η̇|2 dt is therefore bounded from

below by the norm of the constraint. We shall see that it is possible to get equality. For this to
happen, we must have equality in the Poincaré inequality, which is only possible if the periodic
curve η has only the fundamental mode in Fourier series, i.e.

η(t) = sin(t)a+ cos(t)b

for suitable vectors a, b ∈ R4. Putting back this expression inside the energy and the constraint
leads to ∫

I
|η̇(t)|2 dt = π|a|2 + π|b|2 , and

∫
I
η̇(t) ∧ η(t)dt = 2πa ∧ b .

Minimizing π|a|2 + π|b|2 with respect to the constraint 2πa ∧ b = ω′ leads to

|a| = |b| =

√
|ω′|
2π , and a · b = 0 .

We deduce that the problem has a unique solution up to any rotation in the plane defined by
ω′, one of which being given by

a = G
1
2
0 u√
2π

and b = G
1
2
0 v√
2π

.

We finish the proof by writing back ξ in terms of η as

ξ(t) = G
− 1

2
0 η(t) = 1√

2π
(sin(t)u+ cos(t)v) .

3.4. Proof of Theorem 3.1 – Part (B)

Here, we assume that ω 6= 0 is not a simple bivector, or, in other words, that the decomposi-
tion (3.2) of ω involves four non-colinear vectors ω = u1 ∧ v1 + u2 ∧ v2, and we may further
assume without loss of generality that

G0u1 · u1 = G0v1 · v1 , G0u1 · v1 = 0 , G0u2 · u2 = G0v2 · v2 and G0u2 · v2 = 0 . (3.4)

Using the same change of variable η = G
1
2
0 ξ, and setting ω′ := G

1
2
0 u1 ∧G

1
2
0 v1 +G

1
2
0 u2 ∧G

1
2
0 v2, we

know that η solves the minimization problem

Find inf
η∈Ḣ1

]

∫
I
|η̇(t)|2 dt under the constraint

∫
I
η̇(t) ∧ η(t) dt = ω′ . (3.5)

181



François Alouges, Aline Lefebvre-Lepot, et al.

Writing the Euler–Lagrange equations associated with this minimization problem under con-
straints (3.5) leads for any variation δ ∈ Ḣ1

] (I,R4) to∫
I
η̇ · δ̇ dt = λ :

∫
I
η̇ ∧ δ dt (3.6)

where λ ∈
∧2 R4 is the Lagrange multiplier associated with the constraints. This equation in only

valid, i.e. λ exists, whenever the constraints are qualified [13]. This is the case if the gradients
of the constraints are linearly independent, or, in other words if(

µ :
∫
I
η ∧ δ dt = 0 , ∀ δ ∈ Ḣ1

] (I,R4)
)
⇒ µ = 0 .

Assuming the left-hand side, and noticing that (see (2.44))

µ :
∫
I
η̇ ∧ δ dt = −

∫
I

Ω(µ)η̇ · δ dt ,

we deduce that this vanishes for all δ ∈ Ḣ1
] (I,R4) if and only if Ω(µ)η̇ vanishes identically for

all t ∈ I. Now, the matrix Ω(µ) being a 4× 4 skew-symmetric, we may block diagonalize as

Ω(µ) = Pµ


0 φµ 0 0
−φµ 0 0 0

0 0 0 ψµ
0 0 −ψµ 0

P Tµ , (3.7)

where the matrix Pµ is orthogonal.
We therefore only have the following possibilities:

• Either Ω(µ) is invertible (φµ 6= 0 and ψµ 6= 0), and then η̇ vanishes identically. The
stroke η being null average, we deduce that η = 0 which is not possible, since ω′ 6= 0.

• Or rk(Ω(µ)) = 2 (i.e. φµ = 0 or ψµ = 0 but not both) and η̇ (and therefore η itself)
belongs to the bidimensional space Ker(Ω(µ)) for all t ∈ I. Taking a basis (u, v) of
Ker(Ω(µ)), and writing η(t) = a(t)u+ b(t)v for suitable functions a(t) and b(t), we may
compute the constraint

ω′ =
∫
I
η̇ ∧ η dt =

(∫
I
(ȧb− aḃ) dt

)
u ∧ v

which proves that ω′ is simple, and contradicts the assumption.

• The last remaining possibility is that Ω(µ) = 0 (both φµ and ψµ vanish), and therefore
µ = 0.

This proves the qualification of the constraints and the validity of Euler–Lagrange equations (3.6),
that we rewrite as

η̈ = Ω(λ)η̇ .
Integrating it once, and remembering that η is null averaged, leads to

η̇ = Ω(λ)η ,
and η(t) = exp(tΩ(λ))η(0). Block diagonalizing Ω(λ), as in (3.7), we deduce by a short calcula-
tion that

η(t) = sin(φλt)ũ1 + cos(φλt)ṽ1 + sin(ψλt)ũ2 + cos(ψλt)ṽ2 (3.8)
where the vectors (ũ1, ṽ1, ũ2, ṽ2), are mutually orthogonal and verify |ũ1| = |ṽ1| and |ũ2| = |ṽ2|.

Furthermore, noticing that η is a 2π-periodic function, we deduce that φλ and ψλ must be
non-vanishing integers that, without loss of generality, and up to a change of sign of ũ1 and
ũ2, we may furthermore assume to be both non-negative. They are also distinct otherwise there
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would be only two terms for η in (3.8), and the associated constraint would be a simple bivector
which is not the case by assumption.

Computing the energy and the constraint in terms of η using (3.8), we obtain respectively∫
I
|η̇|2 dt = πφ2

λ(|ũ1|2 + |ṽ1|2) + πψ2
λ(|ũ2|2 + |ṽ2|2)

and ∫
I
η̇ ∧ η dt = 2πφλũ1 ∧ ṽ1 + 2πψλũ2 ∧ ṽ2

since φλ and ψλ are different integers.
Now, the decomposition of a bivector as the sum of two simple bivectors is unique whenever

the norm of both simple bivectors are different. We therefore have the following alternative,
remembering that ω′ = G

1
2
0 u1 ∧G

1
2
0 v1 +G

1
2
0 u2 ∧G

1
2
0 v2:

• Either |G
1
2
0 u1 ∧G

1
2
0 v1| 6= |G

1
2
0 u2 ∧G

1
2
0 v2|, and we may assume for instance that |G

1
2
0 u1 ∧

G
1
2
0 v1| > |G

1
2
0 u2∧G

1
2
0 v2|, the other case being treated similarly. Up to a possible exchange

of φλ and ψλ, we deduce that

πφλũ1 ∧ ṽ1 = G
1
2
0 u1 ∧G

1
2
0 v1 and πψλũ2 ∧ ṽ2 = G

1
2
0 u2 ∧G

1
2
0 v2 .

Remember that (ũ1, ṽ1) must be orthogonal and possess the same norm, as well as
(ũ2, ṽ2). But, we know, from (3.4) that (G

1
2
0 u1, G

1
2
0 v1) and (G

1
2
0 u2, G

1
2
0 v2) are orthogonal

and possess the same norm. This enables us to choose

ũ1 = G
1
2
0 u1√
2πφλ

, ṽ1 = G
1
2
0 v1√

2πφλ
, ũ2 = G

1
2
0 u2√

2πψλ
and ṽ2 = G

1
2
0 v2√

2πψλ
.

This choice is unique up to possible rotations in the plane (G
1
2
0 u1, G

1
2
0 v1) for (ũ1, ṽ1) and

the plane (G
1
2
0 u2, G

1
2
0 v2) for (ũ2, ṽ2) respectively.

Plugging these expressions in the energy leads to∫
I
|η̇|2 dt = φλ

∣∣∣∣G 1
2
0 u1 ∧G

1
2
0 v1

∣∣∣∣+ ψλ

∣∣∣∣G 1
2
0 u2 ∧G

1
2
0 v2

∣∣∣∣
and the minimality of the energy, together with the fact that φλ and ψλ are non negative
different integers, leads to

φλ = 1 and ψλ = 2 .

Writing back the stroke in terms of ξ = G
− 1

2
0 η gives

ξ(t) = 1√
2π

(
sin(t)u1 + cos(t)v1 + 1√

2
sin(2t)u2 + 1√

2
cos(2t)v2

)
. (3.9)

• Either |G
1
2
0 u1 ∧ G

1
2
0 v1| = |G

1
2
0 u2 ∧ G

1
2
0 v2|. In that case, the decomposition is not unique

and there may be several optimal curves among them the ones given by

ξ1(t) = 1√
2π

(
sin(t)u1 + cos(t)v1 + 1√

2
sin(2t)u2 + 1√

2
cos(2t)v2

)
and

ξ2(t) = 1√
2π

(
sin(t)u2 + cos(t)v2 + 1√

2
sin(2t)u1 + 1√

2
cos(2t)v1

)
.

But other curves constructed from a different decomposition of the constraint and the
method above are also satisfactory.

183



François Alouges, Aline Lefebvre-Lepot, et al.

3.5. Back to the original problem

The first order problem (2.51) can be solved using the previous theorem with ω = Λ−1δp where
Λ = 2

√
6 diag(α−, α−, α−, β−, β−, β−) (see (2.50)).

The distinction between parts (A) and (B) of the theorem can be rephrased in terms of
the simplicity of the displacement δp directly: due to the block diagonal structure of Λ, we
have that ω is simple if and only if δp is simple. Indeed, consider ω = u ∧ v a simple bivec-
tor and express u and v in the basis (τi)i∈N4 as u =

∑
i aiτi and v =

∑
i biτi. Let Λ̃ =√

2
√

6 diag(
√
β−,

√
β−,

√
β−, α−/

√
β−). Then, identifying vectors and bivectors with their co-

ordinates in their respective bases, the following short calculation gives
Λ̃u ∧ Λ̃v = 2

√
6α− ((a1b4 − a4b1)τ14 + (a2b4 − a4b2)τ24 + (a3b4 − a4b3)τ34)

+ 2
√

6β− ((a1b2 − a2b1)τ12 + (a1b3 − a3b1)τ13 + (a2b3 − a3b2)τ23)
= Λ(u ∧ v)
= δp ,

so that δp is a simple bivector. The converse holds writing ω = Λ−1δp and using the same
argument.

Finally, we deduce that Theorem 3.1 with ω = Λ−1δp enables us to solve the original prob-
lem (2.51). In case δp = u1 ∧ v1 is simple, part (A) of the theorem applies for ω = Λ̃−1u∧ Λ̃−1v
and if δp = u1 ∧ v1 + u2 ∧ v2 is not simple, one can apply part (B) of the theorem with
ω = Λ̃−1u1 ∧ Λ̃−1v1 + Λ̃−1u2 ∧ Λ̃−1v2.

4. Numerical simulations in the long arm regime

From the above, the solution to the first order optimization problem (2.51) can be explicitly
computed provided that Λ, and thus α− and β−, are known. The optimal trajectories can then
be reconstructed by computing the solutions to the first order dynamical system (2.36), which
now requires to know the matrices Ap, Bp for p = 0, . . . , 3. From (2.27), (2.31), (2.32), (2.33),
recall that these matrices only depend on a set of five parameters: α0, α−, α+, ᾱ+ and β−. In
a similar fashion to [5], we explain in this section how to determine the asymptotic expansion
of these parameters in the regime where the arms of the swimmer are assumed to be very long
compared to the radii of the balls. This will enable us afterwards to develop relevant numerical
test cases.

4.1. The long arm regime

In order to proceed we come back to the original optimization problem (from which the dif-
ferent matrices were deduced as first order terms for small strokes) and compute explicitly the
asymptotic expansion of F (R, ζ) that appears in (2.1), i.e.

ṗ = F (R, ζ)ζ̇ .
Let us recall the classical steps that lead to this linear relationship between ṗ and ζ̇. The

starting point consists in taking advantage of the linearity of the Stokes equations, together
with the absence of inertia. Indeed, this provides us with a linear relationship between the
velocities u = (ui)i∈N4 of the balls (Bi)i∈N4 and the forces f = (fi)i∈N4 that the fluid applies to
them

f = Res(ζ)u . (4.1)
Note that the matrix Res(ζ) is not explicit and depends on the shape ζ through the resolution of
the Stokes equations in the fluid domain. However, once Res(ζ) is known, the linear relationship
linking ṗ and ζ̇ that we expressed as (2.1) is a consequence of the following explicit calculations.
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First, one realizes that u is actually linear in ṗ and ζ̇. Indeed, differentiating bi = c+ ζiRzi with
respect to time leads to

ui = ċ+ ζ̇iRzi + ζiṘzi for i ∈ N4 ,

which is linear in ζ̇ and ṗ = (ċ, Ṙ). Plugging this expression in (4.1) shows that f linearly depends
on ṗ and ζ̇. Second, we write both the self propulsion of the artificial swimmer and the force
and torque balances ∑

i∈N4

fi = 0,
∑
i∈N4

(bi − c)× fi = 0 . (4.2)

This finally leads to (2.1).
To go further, we need to obtain an explicit approximation of the matrix Res(ζ) in the

considered regime. As it is classical, was already introduced in [18] and rigorously proven in [2,
3], we may approximate the velocity of the i-th sphere as a sum of two contributions, a self
interaction term and a correction due to the other spheres, assumed to be far:

ui := 1
6πµafi +

∑
j 6=i∈N4

S(bij)fj , (4.3)

where bij := bi − bj , and the stokeslet

S(x) := 1
8πµ

( Id3
|x|

+ x⊗ x
|x|3

)
,

is the fundamental solution to the Stokes equations. Eventually, an approximation of Res(ζ) is
explicitly obtained by using the Neumann series (to first order) to invert (4.3). From the previous
computations, we obtain an asymptotic expansion of F (R, ζ) in the long arm regime. Explicit
approximations of the matrices Ap, Bp for p = 0, . . . , 3 follow by computing the corresponding
first order terms in the small strokes expansions (2.20) and (2.21).

We have used a symbolic calculation software to compute the preceding expressions and iden-
tify the parameters that appear in the different matrices. The structure of the matrices A0, B0,
A+
i , A

−
i , B

+
i and B−i , that does not depend on the approximation, have been recovered, giving

a serious hint about the validity of the method. Finally we obtained the following expansions in
terms of a and ξ0:

α0(a, ξ0) = −1
4 + 3

32

√
3
2
a

ξ0
+O

(
a

ξ0

)2
,

α−(a, ξ0) = 1
ξ0

(√
3

256
a

ξ0
+O

(
a

ξ0

)2
)
,

α+(a, ξ0) = 1
ξ0

(
− 3

128

√
3
2
a

ξ0
+O

(
a

ξ0

)2
)
,

ᾱ+(a, ξ0) = 1
ξ0

(
− 9

128

√
3
2
a

ξ0
+O

(
a

ξ0

)2
)
,

β−(a, ξ0) = 1
ξ2

0

(
− 1

16
√

6
+ 9

512
a

ξ0
+O

(
a

ξ0

)2
)
.

Concerning the long arm expansion of the energy functional G, we follow the same lines.
Namely, the energy density is given by f · u, and we have already seen that both f and u can
be expressed linearly in terms of ṗ and ζ̇. Using the dynamical system ṗ = F (R, ζ)ζ̇ allows us
to write G as a quadratic form in ζ̇. An explicit approximation of G0 in (2.18) in the long arm
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regime is obtained as before, giving

ρ(a, ξ0) = 3
4 + 9

16

√
3
2
a

ξ0
+O

(
a

ξ0

)2
,

h(a, ξ0) = 1
12 + 3

16

√
3
2
a

ξ0
+O

(
a

ξ0

)2
.

In addition, we find for the eigenvalues of G0

g1(a, ξ0) = g2(a, ξ0) = g3(a, ξ0) = 2
3 + 3

8

√
3
2
a

ξ0
+O

(
a

ξ0

)2
,

g4(a, ξ0) = 1 + 9
8

√
3
2
a

ξ0
.

In the following subsections, we use those expressions for the numerical simulation of the
dynamical system under study. Some relevant parameters a and ξ0 will be used.

4.2. Numerical implementation

In this section, we present the results of some numerical simulations of optimal control curves
obtained by Theorem 3.1. Given the fact that the theoretical results presented in this paper
only involve ordinary differential equations and linear algebra, the implementation of numerical
simulations is relatively straightforward in python3. Indeed, we used the package clifford [6] to
handle the bivectors while the standard routines from scipy.integrate permit us to evaluate
integrals and solve the initial value problems. We use in particular a high-precision explicit
Runge–Kutta method like DOP853 of scipy.integrate, where one has to choose the tolerance
as small as possible, or an implicit method such as LSODA. All the parameters involved in the
control system, as well as the optimization problem, are implemented according to the results
of Section 4.1 with a = 10−2 and ξ0 = 102.

In the following, we demonstrate on the one hand that one retrieves experimentally the same
convergence order with respect to the size ε of the stroke, as predicted in Proposition 2.7. On the
other hand, we present the corresponding trajectories as well as an example of non-uniqueness for
a certain class of net displacements. To that end, let us consider the following net displacements
represented in the standard basis of R3 × Skew3(R):

δp1 = (0, 0, 1, 0, 0, 0)T ' τ3 ∧ τ4,

δp2 = (0, 0, 0, 0, 0, 1)T ' τ1 ∧ τ2,

δp3 = (1, 1, 0, 0, 0, 1)T ' τ1 ∧ τ4 + τ2 ∧ τ4 + τ1 ∧ τ2,

δp4 = (0, 0, 1, 0, 0, 1)T ' τ3 ∧ τ4 + τ1 ∧ τ2,

which correspond to a translation along the z-axis, a rotation around the z-axis, a translation
in the xy-plane with an additional rotation around the z-axis and a screw motion along the
z-axis, respectively, cf. (2.49). Note that the first three net displacements are simple (δp3 =
(τ1 + τ2) ∧ (τ2 + τ4)) while the last one is non-simple and corresponds to a combination of δp1
and δp2.

Given each desired displacement δpi, the corresponding optimal stroke solution to (2.51) t→
ξ(t) is explicitly provided by Theorem 3.1. Then, the corresponding trajectory of the swimmer
t → (c(t), R(t)) is computed solving the first order dynamical system (2.36) numerically. The
method can be validated by comparing the final displacement (c(2π) − c(0), R(2π) − R(0)) to
(δc, δR) given from δpi.
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4.3. Orders of convergence

For the convergence experiment, we have rescaled the net displacements with a parameter ε ∈
(10−1, 1), which yields a corresponding optimal control curve ξε. The preceding comparison of
the final displacement is plotted with respect to the magnitude ε of the stroke in Figure 4.1. We
retrieve the convergence orders O(ε3) and O(ε4), respectively for the translational and rotational
parts (see Proposition 2.7).

Figure 4.1. The numerical convergence behavior of the theoretical net displace-
ment in Proposition 2.7 in both translation and rotation.

In the left picture that shows the error in translation, the predicted order of convergence
is recovered except for the case δp1, where we observe that the computer accuracy is already
reached from the beginning. In the right picture that gives the error in rotation, the right order
of convergence is also recovered, together with the same behavior as before for the case δp1.
We strikingly also observe a sudden increase of the accuracy for the cases corresponding to
simple bivectors (δp2 and δp3) whereas the non-simple case does not show this kind of super-
convergence. This would need further investigation to be explained.

4.4. Trajectories

Let us discuss the two trajectories associated with the simple displacements δp1 and δp2 rescaled
by ε = 10−3 in order to be in the small displacement regime. The results are given in Figures 4.2
and 4.3 respectively.

In the first case, where we impose a vertical displacement without rotation, we observe that
the swimmer only moves along the vertical axis and does not experience any rotation during the
whole stroke. We have represented the z-coordinate of the swimmer: the final displacement is
achieved, through a round trip trajectory, which is a classical behavior for this kind of systems.
For the pure z-rotation case δp2, the picture shows a circular motion in the xy-plane of the
swimmer that goes back to its initial position at the end of the stroke. As far as the rotation
is concerned, we have represented the swimmer along the trajectory, magnifying the rotations
to get a clearer picture. As expected, a pure z-rotation is clearly visible between the initial and
final states. Both trajectories so far reflect the typical behavior of a Stokesian micro-swimmer
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Figure 4.2. Trajectory of SPr4 associated with the optimal control curve re-
alizing a net displacement proportional to δp1, i.e. a translation in z-direction.

Figure 4.3. Trajectory of SPr4 associated with the optimal control curve re-
alizing a net displacement proportional to δp2, i.e. a rotation around the z-axis.
The initial and final positions are marked by neon green and purple arms, re-
spectively.

(cf. [5]). Finally, the trajectory corresponding to a net displacement proportional to δp3 is very
similar and thus omitted.

More involved trajectories can also be obtained. As an example, we show in Figure 4.4 the
optimal trajectory found for a prescribed displacement δp = (2, 2, 0, 0, 0, 1). We notice that this
displacement is still simple, but nevertheless produces a non obvious optimal trajectory.

Let us now consider the non-simple net displacement δp4 (screw motion along z) that we have
again rescaled, this time by a factor 10−4. Figure 4.5 shows the corresponding trajectory, which
is exactly the superposition of the oscillation along the z-axis and the circular motion in the
xy-plane corresponding to δp1 and δp2.

As shown, the trajectory becomes quite more complicated for such imposed (non-simple)
displacements. Notice also that there is no specific reason for the axis of the imposed rotation
to be aligned with the translation. A general translation, in any direction, can be imposed
together with a general rotation with any axis. In such a context, when the periodic stroke
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Figure 4.4. Trajectory of SPr4 associated with the optimal control curve re-
alizing a net displacement proportional to δp = (2, 2, 0, 0, 0, 1). The initial and
final positions are marked by neon green and purple arms, respectively.

Figure 4.5. Trajectory of SPr4 associated with the optimal control curve real-
izing a net displacement proportional to δp4, i.e. a screw motion along the z-axis.
The initial and final positions are marked by neon green and purple arms, re-
spectively.

189



François Alouges, Aline Lefebvre-Lepot, et al.

is applied several times, the artificial swimmer experiences an helical trajectory. This kind of
helical trajectory has been heavily discussed in the literature and observed in real systems (see
for instance [9, 20] and references therein).

4.5. A non-uniqueness result

Let us finish this discussion with one of the most interesting features of the optimal control
problem (2.51). Namely, the fact that for a certain class of prescribed net displacements, the
corresponding optimal control curve is not unique. Those displacements are precisely the ones
which are associated with a non-simple bivector whose orthogonal summands are of the same
norm. Indeed, since there are infinitely many decompositions of such a bivector into the sum of
two orthogonal simple bivectors, Theorem 3.1 yields infinitely many optimal control curves in
this special case.

A general construction of such decompositions is beyond the scope of this paper. However,
let us consider the following basic example: consider a net displacement δp such that

ω := Λ−1δp ∼ τ1 ∧ τ2 + τ3 ∧ τ4,

i.e. ω is proportional to the right-hand side. Then, we easily find a second decomposition of ω
by hand. Indeed, one has for instance

τ1 ∧ τ2 + τ3 ∧ τ4 = 1
2(τ1 + τ3) ∧ (τ2 + τ4) + 1

2(τ1 − τ3) ∧ (τ2 − τ4).

This yields two distinct optimal control curves and thus two distinct trajectories for the
swimmer SPr4, which are presented in Figure 4.6. As one can see, the two trajectories are
distinct, while the net displacement remains the same.

Notice that yet another decomposition (there exist infinitely many) is also possible such as

τ1 ∧ τ2 + τ3 ∧ τ4 = 1
2(τ1 − τ4) ∧ (τ2 + τ3) + 1

2(τ1 + τ4) ∧ (τ2 − τ3),

that would give another optimal control curve.

Figure 4.6. A case of non-unique optimal trajectories. Two trajectories are
shown yielding to the same displacement and rotation δp such that Λ−1δp ∼
τ1 ∧ τ2 + τ3 ∧ τ4, one in solid line, and the other in dotted line. The three picture
correspond respectively to the front, side and top views of those two trajectories.
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Final comments

The method described in this paper has been incorporated in a Python code from which the
figures given before were computed. This code is available under the MIT license, in the GitLab
of EPFL at the address https://gitlab.epfl.ch/weder/spr.
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