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Abstract

We solve the problem of super-hedging European or Asian options for discrete-time financial market
models where executable prices are uncertain. The risky asset prices are not described by single-valued
processes but measurable selections of random sets that allows to consider a large variety of models including
bid-ask models with order books, but also models with a delay in the execution of the orders. We provide a
numerical procedure to compute the infimum price under a weak no-arbitrage condition, the so-called AIP
condition, under which the prices of the non negative European options are non negative. This condition is
weaker than the existence of a risk-neutral martingale measure but it is sufficient to numerically solve the
super-hedging problem. We illustrate our method by a numerical example.

1. Introduction

As observed in practice, the executed value of an asset may depend on the order sent by the
trader and, also, on the quantities available in the order book. Among the possible causes of
the well-known slippage phenomenon, delays in the execution of the orders, liquidity disorders,
market impacts, or transaction costs may influence the executed value. An approach to overcome
this difficulty is to assume that we do not know in advance the traded prices. In that case, as
proposed in the paper, the order that the trader sends is a mapping that associates to each
possible price available in the market a quantity to sell or buy. This is exactly what we generally
observe in practice, in a presence of an order book for example, since there is no single price.

On the contrary, it is traditional in mathematical finance to suppose that we first observe a
(new) single market price and, then, we choose almost instantaneously the number of assets to
sell or buy in order to revise the portfolio. This means that the last traded price is kept constant
long enough in the order book. Moreover, it coincides with a bid and ask price so that the buy
and sell orders are executed at the same value.

In real life, there may be delayed information, see the recent paper [1] or [24, 30] among others
on stochastic control. The delayed information in the problem of pricing is sometimes modeled
through incomplete or restricted information as in [14, 18, 19, 29] or using a two filtrations
setting as in [13].

Another type of uncertainty is due to the choice of the model supposed to approximate the
real financial market [5]. Model risk may lead to price misevaluations that are studied in recent
papers, in the growing field of robust finance. Since the seminal work of Knight [20], it is now
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broadly accepted that uncertainty may be described by a parametrized family of models, instead
of considering only one model, if there is a lack of information on the parameters, see [3, 4, 9, 16,
22, 25, 31]. Other models consider that the market is driven by a family of probability measures
in such a way that uncertainty stems from the existence of several possible reference probability
measures determining which events are negligible, see [6, 7, 8, 11, 12, 17, 23, 26].

In any case, uncertainty is taken into account in the literature by considering either several
probabilistic structures, e.g. a family of reference probability measures and filtrations for the
same price process or a family of price process models on the same stochastic basis. In the recent
paper [27], the choice is made to fix only one filtered probability space on which a collection of
stochastic processes describes the possible dynamics of the stock prices. We follow this alternative
approach. Precisely, we consider a unique stochastic basis but we suppose that, in discrete time,
the next stock prices at any time are not modeled by a unique vector-valued random variable as
it is usual to do. Instead, we assume that the next stock prices belong to a collection of possible
processes. The approach we adopt in our paper is slightly different from [27] in the sense that
the collections of possible prices we consider are connected from time to time in such a way that
it is possible to represent them through measurable random sets.

Moreover, a less common type of uncertainty is introduced in this paper. Recall that it is usual
in the literature, even in the recent papers on robust finance, to suppose that the transactions are
executed at a price which is known in advance. For example, in the Black and Scholes model, the
delta-hedging strategy for the European Call option at time t is a function Φ(t, St) of the single
price St observed at time t. In practice, the strategy is discretized at some dates (ti)i=0,...,n with
n→ +∞ so that the number of stocks to trade at time ti is ∆Φti = Φ(ti, Sti)−Φ(ti−1, Sti−1). In
the case where ∆Φti < 0, the executed price at time ti should be a bid price in the order book
and an ask price otherwise, i.e. there should be at least two possible prices.

We take into account this ambiguity or uncertainty in our paper by assuming that there may
be several possible executable prices at the next instant. This means in particular that we do
not know in advance the price when we send an order to be executed. Precisely, an executed
price St at time t is only Ft+1-measurable where Ft describes the market information available
at time t. This is illustrated in our numerical example where the stock price is modeled by a
pair of bid and ask prices.

This article addresses the super-hedging problem of European or Asian options under uncer-
tainty and may be easily adapted to American options in discrete time. Here the uncertainty
mainly refers to the uncertainty in executed prices due to the delay, which is modeled by random
sets, and there is one single physical probability measure. Moreover, uncertainty may also refers
to the presence of an order book so that several prices may exist and depend on the traded
volumes. The advantage of the approach we consider is its flexibility, including a large variety
of possible models, e.g. with transaction costs or limit order books. Contrarily to the classical
approach, we do not suppose the existence of a risk-neutral probability measure but we work
under the AIP condition of [2, 10], i.e. we suppose that the super-hedging prices of the non-
negative European claims are non-negative, as it is easily observed in the real financial market.
We recall that the AIP condition is weaker than the usual NA condition but it is sufficient to
deduce numerically tractable pricing estimations, as illustrated in our numerical example.

The paper first focuses on the one-period case, see Section 3.1, and the multi-period case
is automatically obtained by (measurably) paste all periods together. The one-period hedging
problem can be described as:

Vt−1 + θt−1∆St ≥ gt(S0, . . . , St), a.s. for all St ∈ Λt((Su)u≤t−1).

Here St is a possible executed price which is Ft+1-measurable, θt−1 is a trading strategy which
is made at time t − 1 and its outcome is revealed at the same time t as St−1 due to execution
delay and, thus, Vt−1, which models the portfolio value at time t− 1, is also Ft-measurable; g is
an Asian option to be hedged while Λt((Su)u≤t−1) represents the set of all possible prices St that
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can be traded strictly after time t. The problem is essentially converted to the one without delay
by taking supremum conditioned on Ft in the above equation, and the (minimal) super-hedging
price is provided in Theorem 3.1 in terms of the concave envelope of some related function
restricted on the conditional closure of Λt((Su)u≤t−1), see [15]. Properties of the hedging price,
including continuity, convexity, and measurability are analyzed in Section 3.2. These properties
are important to deduce backwardly the multi-period case which involves a measurable pasting.

The benefit of our approach is its easy implementation as illustrated in Section 4. Indeed,
roughly speaking, our main results state that we only need to know the range of the future price
values in terms of the observed prices to deduce the strategy θt to be followed. This can be
achieved from a historical data. The strategy depends at time t on the price St, i.e. θt = θt(St)
where St is only revealed at time t+ 1 so that the order a time t is the Ft-measurable mapping
z 7→ θt(z) and not θt(St). Note that the executed price St will depend on the model, e.g. St may
be one of the several bid and ask prices, and the delayed observation of St at time t+ 1 allows
to deduce the quantity θt(St) to hold in the portfolio.

2. Formulation of the problem

Let (Ω, (Ft)t∈{0,...,T+1},FT , P ) be a filtered complete probability space where T is the time hori-
zon. We suppose that F0 is the trivial σ-algebra and the σ-algebra Ft represents the information
available on the market at time t. The financial market we consider is composed of d risky assets
and a bond S0. We assume without loss of generality that S0 = 1.

In the following, we shall consider random subsets A of Rd, i.e. A = A(ω) may depend on
ω ∈ Ω. We then denote by L0(A,Ft) the set of all random variables Xt which are Ft-measurable
and satisfies Xt(ω) ∈ A(ω) a.s.. At last, Rd

+ is the set of all x = (xi)di=1 ∈ Rd such that xi ≥ 0
for all i = 1, . . . , d.

Let us consider, for each t ≤ T + 1, Λt ⊆ L0(Rd
+,Ft+1) a collection of Ft+1-measurable

random variables representing the possible executable prices for the risky assets between time
t and time t + 1. We suppose that, at time t, the set Λt may depend on the observed traded
prices before time t, i.e. to each vector of prices (Su)u≤t−1, we associate a set Λt = Λt((Su)u≤t−1)
representing the possible next prices St after time t given that we have observed the executed
prices (Su)u≤t−1 at time t. We adopt the financial principle that the executed price St is only
known strictly after the order is sent at time t but before time t+ 1.

Definition 2.1. A price process is an (Ft+1)t=−1,...,T -measurable non-negative process
(St)t=−1,...,T such that St ∈ Λt((Su)u≤t−1) is Ft+1 measurable for all t = 0, . . . , T and S−1 ∈ R
is given.

Example 2.2. Recall that St represents the prices (S1
t , . . . , S

d
t ) of d ≥ 1 risky assets proposed

by the market to the portfolio manager when selling or buying. A typical case could be Λt =
L0(It,Ft+1) with

It =
d∏
j=1

[Sbjt , S
aj
t ],

where (Sbj)j=1,...,d and (Saj)j=1,...,d are respectively the bid and the ask price processes observed
in the market between time t and t+ 1 that may depend on (Su)u≤t−1. They are not necessary
the best bid/ask prices as, in practice, the real transaction price may be a convex combination of
bid and ask prices. Indeed, a transaction is generally the result of an agreement between sellers
and buyers but it also depends on the traded volume. Clearly, the portfolio manager does not
benefit in general from the last traded price observed in the market when sending an order. On
the contrary, he should face an uncertain price St that depends on the type of order (and may
be not executed) but it also depends on some random events he does not control, e.g. slippage.
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A simple way to model this phenomenon is to suppose that the executable prices obtained by
the manager belong to random intervals.

Example 2.3. Another interesting case is when Λt = {Sθt : θ ∈ Θ} is a parametrized family
of random variables. For instance, consider fixed processes (ξu)u≤T and (mu)u≤T adapted to
(Ft+1)t=0,...,T and independent of Ft. Let C be a compact subset of R and suppose that S−1 is
given. We define recursively

Λt((Su)u≤t−1) = {St−1 exp(σξt +mt) : σ ∈ C} , St−1 ∈ Λt−1, t ≤ T.

In this model, there is an uncertainty on prices because of the unknown parameter (volatility)
σ. This is a classical problem in robust finance, see for example [22].

A portfolio strategy is an (Ft+1)t=−1,...,T -adapted process θ̂ = (θ0, θ) where, for all t =
0, . . . , T , θt ∈ Rd (resp. θ0

t ∈ R) describes the quantities of risky assets (resp. the bond) held in
the portfolio between time t and time t+ 1. Since the strategies are not supposed to be adapted
to (Ft)t=0,...,T but only adapted to (Ft+1)t=0,...,T , the manager is not supposed to control the
quantity of assets he wants to sell or buy. This is what happens in practice because the orders
are not necessarily executed, for instance in the case of limit stock market orders. Precisely, the
portfolio manager may send an Ft-measurable order at time t that depends on the uncertain
price St which is only Ft+1 measurable. For instance, such an order could be Buy at most 1000
units at a price less than or equal to 145 euros so that the strategies and the executed prices
are linked. In the example, the executed quantity should be deduced from an order book as the
minimum between 1000 and the number of assets we may obtain for a price less that 145. Then,
the executed price is a weighted average of all prices available for less than 145 in the order
book.

For such a strategy θ̂ = (θ0, θ), we define the portfolio process with initial endowment V0 ∈
L0(R,F1), as the liquidation value

V θ̂ = θ0 + θS = θ0 +
d∑
i=1

θiSi.

Recall that St is observed strictly after the portfolio manager sends an order for θt at time t.
In the super-hedging problem we solve, we expect orders which are mapping x 7→ ∆θt(x) =
θt(x) − θt−1((Su)u≤t−1) where ∆θt(x) is Ft-measurable and the executed quantity ∆θt(St) is
only Ft+1-measurable since St is Ft+1-measurable. Here the notation xy is used to designate the
Euler scalar product between two vectors x, y of Rd.

In the following, we only consider self-financing portfolio processes V θ̂, i.e. they satisfy by
definition:

∆V θ̂
t := V θ̂

t − V θ̂
t−1 = θt−1∆St,

where ∆St := St − St−1. Indeed, this dynamics holds if and only if we have −(θ0
t − θ0

t−1)S0
t =

(θt − θt−1)St. This means that the cost of the new portfolio allocation (θ0
t , θt), i.e. buying or

selling the quantities (|θit − θit−1|)di=0, at the executed price St is charged to the cash account.
Therefore,

V θ̂
t = V0 +

t∑
u=1

θu−1∆Su. (2.1)

It is then natural by (2.1) to write V θ = V θ̂.
The aim of the paper is to solve the following problem: Construct the minimal super-hedging

strategy of an Asian option whose payoff is g(S0, . . . , ST ) for some convex deterministic function
g on (Rd)T+1. Because of price uncertainty, this means that we shall construct a self-financing
strategy θ and we shall determine the minimal initial endowment V0 = V θ

0 such that we have
V θ
T ≥ g(S0, S1, . . . , ST ) independently of the value of the executable prices St ∈ Λt((Su)u≤t−1)
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are for t ≤ T . Note that Vt is Ft+1-measurable hence one more step is necessary to deduce the
initial endowment P0 at time t = 0 we need for initiating a super-hedging portfolio process V , i.e.
P0 ≥ V0. Indeed, P0 should be F0-measurable, i.e. a constant, or equivalently P0 ≥ ess supF0(V0).
We refer to [10] for the definitions of conditional essential supremum and infimum.

3. The super-hedging problem

3.1. The one time step resolution

We first introduce the basic tools and theoretical results we need in this section. A set Λ of
measurable random variables is said F-decomposable if for any finite partition (Fi)i=1,...,n ⊆ F
of Ω, and for every family (γi)i=1,...,n of Λ, we have

∑n
i=1 γi1Fi ∈ Λ. In the following, we denote

by Σ(Λ) the F-decomposable envelope of Λ, i.e. the smallest F-decomposable family containing
Λ. Notice that

Σ(Λ) =
{

n∑
i=1

γi1Fi : n ≥ 1, (γi)i=1,...,n ⊆ Λ, (Fi)i=1,...,n ⊆ F s.t.
n∑
i=1

Fi = Ω
}
.

The closure Σ(Λ) in probability of Σ(Λ) is decomposable even if Λ is not decomposable. By [21,
Theorem 2.4], there exists a F-measurable closed random set σ(Λ) such that Σ(Λ) = L0(σ(Λ),F)
is the set of all F-measurable selectors of σ(Λ).

We now introduce the general one step problem between the dates t − 1 and t for t ≥ 1. To
do so, we suppose that after time t− 1 but strictly before time t the portfolio manager observes
the price St−1, as a consequence of their order, see Definition 2.1. More precisely, the portfolio
manager knows (Su)u≤t−2 at time t− 1 and sends an order at time t− 1 which is executed with
a delay so that the executed price St−1 ∈ Λt−1((Su)u≤t−2) is only observed strictly after t − 1,
i.e. St−1 is Ft-measurable.

In the following, we consider the σ-algebra Ft = σ(Su : u ≤ t − 1) for all t ≥ 1. Let
us consider a random function gt defined on (Rd)t+1, t ≥ 1. We assume that the mapping
(ω, z) 7→ gt(S0(ω), . . . , St−1(ω), z) is Ft × B(Rd)-measurable and z 7→ gt(S0, S1, . . . , St−1, z) is
lower-semicontinuous (l.s.c.) almost surely independently the price process (Su)u≤t−1 is. The
first goal is to characterise the set Pt−1 of all Vt−1 ∈ L0(R,Ft) that depend on (Su)u≤t−1 such
that:

Vt−1 + θt−1∆St ≥ gt(S0, . . . , St), a.s. for all St ∈ Λt((Su)u≤t−1), (3.1)
for some θt−1 ∈ L0(Rd,Ft) 1. As θt−1 is only Ft-measurable, we also expect a dependence
between θt−1 and (Su)u≤t−1 as we shall see later. Nevertheless, we do not suppose an explicit
dependence of Λt((Su)u≤t−1) with respect to θt−1, which is an open problem. We observe by
lower-semicontinuity that (3.1) holds if and only if

Vt−1 + θt−1∆St ≥ gt(S0, . . . , St), a.s. for all St ∈ Σ(Λt((Su)u≤t−1)). (3.2)

This means that we may suppose w.l.o.g. that Σ(Λt((Su)u≤t−1)) = Λt((Su)u≤t−1). In the
following, we denote by It((Su)u≤t−1) the Ft+1-measurable closed random set such that
Σ(Λt((Su)u≤t−1)) = L0(It((Su)u≤t−1),Ft+1), see [21, Theorem 2.4].

By [15, Theorem 3.4], we deduce that (3.1) is equivalent to Vt−1 ≥ pt−1 where pt−1 =
pt−1((Su)u≤t−1, θt−1) is given by

pt−1 = θt−1St−1 + sup
z∈cl(It((Su)u≤t−1)|Ft)

(gt(S1, . . . , St−1, z)− θt−1z) ,

= θt−1St−1 + f∗t−1(−θt−1).

1Note that the condition Vt−1 ∈ L0(R, Ft) is not sufficient for the portfolio manager to observe it when t = 1
as V0 is not F0-measurable.
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In the formula above, cl(It((Su)u≤t−1)|Ft) is the conditional closure of It((Su)u≤t−1), i.e. the
smallest Ft-measurable closed random set which contains It((Su)u≤t−1) almost surely. We refer
the readers to [15, Theorem 3.4] for the existence and uniqueness of such conditional random
set. Moreover, f∗t−1(y) = supz∈Rd(yz − ft−1(z)) is the Fenchel–Legendre conjugate function of
ft−1 defined as

ft−1(z) := −gt(S0, . . . , St−1, z) + δcl(It((Su)u≤t−1)|Ft)(z), (3.3)
where δcl(It((Su)u≤t−1)|Ft) ∈ {0,∞} is infinite on the complimentary of cl(It((Su)u≤t−1)|Ft) and
0 otherwise. Notice that f∗t−1 is convex and l.s.c. as a supremum (on cl(It((Su)u≤t−1)|Ft)) of
convex and l.s.c. functions. Moreover, by [15, Theorem 3.4], (ω, y) 7→ f∗t−1(ω, y) is Ft × B(Rd)-
measurable. Therefore, Dom f∗t−1 := {y : f∗t−1(ω, y) < ∞} is an Ft-measurable random set. We
deduce that the Ft-measurable prices at time t− 1 are given by the Minkowski sum

Pt−1((Su)u≤t−1) =
{
θt−1St−1 + f∗t−1(−θt−1) : θt−1 ∈ L0(Rd,Ft)

}
+ L0(R+,Ft). (3.4)

The second step is to determine the infimum super-hedging price as

pt−1((Su)u≤t−1) = ess infFt Pt−1((Su)u≤t−1). (3.5)

To do so, we use the arguments of [10, Theorem 2.8] and we obtain our first main result:

Theorem 3.1. Suppose that the mapping (ω, z) 7→ gt(S0(ω), . . . , St−1(ω), z) is Ft × B(Rd)-
measurable and z 7→ gt(S0, S1, . . . , St−1, z) is lower-semicontinuous (l.s.c.) almost surely what-
ever the price process (Su)u≤t−1 is. Let us consider the function ft defined by (3.3) and the set
of all prices given by (3.4). Then, the infimum price given by (3.5), satisfies pt−1((Su)u≤t−1) =
−f∗∗t−1(St−1).

Proof. This is a consequence of the following chain of equalities:

pt−1((Su)u≤t−1) = ess infFt

{
θt−1St−1 + f∗t−1(−θt−1) : θt−1 ∈ L0(Rd,Ft)

}
,

= ess infFt

{
−θt−1St−1 + f∗t−1(θt−1) : θt−1 ∈ L0(Rd,Ft)

}
,

= − ess supFt

{
θt−1St−1 − f∗t−1(θt−1) : θt−1 ∈ L0(Rd,Ft)

}
,

= − ess supFt

{
θt−1St−1 − f∗t−1(θt−1) : θt−1 ∈ L0(Dom f∗t−1,Ft)

}
,

= − sup
z∈Domf∗

t−1

(
zSt−1 − f∗t−1(z)

)
,

= − sup
z∈Rd

(
zSt−1 − f∗t−1(z)

)
,

= −f∗∗t−1(St−1). (3.6)

�

Note that we do not need to suppose no-arbitrage conditions to establish the very general pric-
ing formula above. It is only based on the lower-semicontinuity and measurability assumptions
satisfied by the payoff g.

3.2. Main properties satisfied by the one time step infimum super-hedging price

The results of this section are the main contribution of our paper. They are needed to propagate
the one time step pricing procedure of Section 3.1 to the multi-period case. In the following, we
suppose that, for all price process (Su)u≤t−1, there exists αt−1 ∈ L0(Rd,Ft) and βt−1 ∈ L0(R,Ft)
that may depend on (Su)u≤t−1 such that

gt(S0, . . . , St−1, x) ≤ αt−1x+ βt−1, ∀ x ∈ cl(It((Su)u≤t−1)|Ft). (3.7)
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This is the case for Asian options whose payoffs are for example of the form k(S0 + S1 + · · · +
St −K)+, k ≥ 0. By [10][Theorem 2.8], we know that

pt−1((Su)u≤t−1)
= inf {αSt−1 + β : αx+ β ≥ gt(S0, . . . , St−1, x), ∀ x ∈ cl(It((Su)u≤t−1)|Ft)} . (3.8)

We first establish the following result:2

Proposition 3.2. Let (Su)u≤t−1 be a price process. Suppose that the mapping (ω, z) 7→
gt(S0(ω), . . . , St−1(ω), z) is Ft × B(Rd)-measurable and the function z 7→ gt(S0, . . . , St−1, z) is
l.s.c. almost surely. If St−1 /∈ conv cl(It((Su)u≤t−1)|Ft), then pt−1(((Su)u≤t−1)) = −∞. More-
over, pt−1((Su)u≤t−1) ≥ gt(S0, . . . , St−1, St−1) if St−1 ∈ conv cl(It((Su)u≤t−1)|Ft). At last, if
gt(S0, . . . , St−1, ·) is bounded from below by mt−1 ∈ L0(R,Ft) on cl(It((Su)u≤t−1)|Ft), then we
have pt−1(((Su)u≤t−1)) ≥ mt−1 if St−1 ∈ conv cl(It((Su)u≤t−1)|Ft).
Proof. Suppose that St−1 /∈ conv cl(It|Ft) where It = It((Su)u≤t−1). By the Hahn–Banach sepa-
ration theorem and a measurable selection argument, there exists a non null α∗t−1 in
L0(Rd \ {0},Ft) and c1

t−1, c
2
t−1 ∈ L0(Rd,Ft) such that we have the inequality α∗t−1y < c1

t−1 <
c2
t−1 < α∗t−1St−1 for all y ∈ cl(It|Ft). Multiplying the inequality by a sufficiently large positive
multiplier, we may suppose that α∗t−1(St−1 − y) ≥ n where n ∈ N is arbitrarily chosen. Let
us introduce α̃t−1 = αt−1 − α∗t−1 and β̃nt−1 = βt−1 + α∗t−1St−1 − n, n ≥ 1. By construction,
αt−1x + βt−1 ≤ α̃t−1x + β̃nt−1 for all x ∈ cl(It|Ft), where αt−1, βt−1 are given in (3.7). It fol-
lows that α̃t−1x + β̃nt−1 ≥ gt(S1, . . . , St−1, x), for every x ∈ cl(It|Ft). By (3.8), we deduce that
pt−1 ≤ α̃t−1St−1 + β̃nt−1, i.e. pt−1 ≤ αt−1 + βt−1 − n. As n→∞, we deduce that pt−1 = −∞.

Suppose that z 7→ gt(S1, . . . , St−1, z) is a.s. convex and, furthermore, St−1 ∈ conv cl(It|Ft).
By (3.8),

pt−1((Su)u≤t−1) ≥ gt(S0, . . . , St−1, St−1).
At last, suppose that z 7→ gt(S0, S1, . . . , St−1, z) is bounded from below by mt−1 ∈ L0(R,Ft)

on cl(It|Ft) and St−1 ∈ conv cl(It|Ft). Then, St−1 = limn→∞ Sn where Sn ∈ conv cl(It|Ft),
i.e. Sn =

∑Jn
i=1 λi,nxi,n where λi,n ≥ 0 with

∑Jn
i=1 λi,n = 1 and xi,n ∈ cl(It|Ft) for all i, n.

Consider (α, β) such that αx + β ≥ gt(S0, . . . , St−1, x) for all x ∈ cl(It|Ft). Then, αSt−1 + β =
limn→∞(αSn + β) with

αSn + β =
Jn∑
i=1

λi,n(αxi,n + β) ≥
Jn∑
i=1

λi,ngt(S1, . . . , St−1, xi,n)

≥ mt−1.

We deduce that αSt−1 + β ≥ mt−1 hence pt−1 ≥ mt−1 by (3.8). �

Corollary 3.3. Let (Su)u≤t−1 be a price process. Suppose that the mapping (ω, z) 7→
gt(S0(ω), . . . , St−1(ω), z) is Ft × B(Rd)-measurable and the function z 7→ gt(S0, . . . , St−1, z)
is l.s.c. a.s. and convex or bounded from below by mt−1 ∈ L0(R,Ft) on cl(It((Su)u≤t−1)|Ft).
Then, pt−1((Su)u≤t−1) 6= −∞ if and only if St−1 ∈ conv cl(It((Su)u≤t−1)|Ft). In particular, the
infimum super-hedging price of any non negative payoff function is finite if and only if it is non
negative or equivalently if St−1 ∈ conv cl(It(Su)u≤t−1|Ft).

As studied in [10], the non negativity of the prices for the zero claim or more generally for
non negative European call options corresponds to a weak no arbitrage condition (AIP) which
is naturally observed in practice. Adapted to our setting, we introduce the following definition:
Definition 3.4. We say that condition AIP holds between t− 1 and t if the prices at time t− 1
of the time t zero claim is non negative for every price process (Su)u≤t−1. Moreover, we say that
the condition AIP holds when AIP holds at any time step.

2The notation conv(A) designates the closed convex hull of A, i.e. the smallest convex closed set containing A.
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As observed in [10] and above, when AIP fails, the infimum of the zero claim, and more
generally of non negative payoffs, may be −∞. In that case, the numerical procedure we develop
in this paper is still valid but unrealistic and non-implementable in practice. By Corollary 3.3,
we have:

Corollary 3.5. The condition AIP holds between t− 1 and t if and only if
St−1 ∈ conv cl(It((Su)u≤t−1)|Ft)

for any price process (Su)u≤t−1, i.e.
It−1((Su)u≤t−2) ⊆ conv cl(It(Su)u≤t−1|Ft), t ≥ 1.

In the following, if g is a function defined on Rd and D is a subset of Rd, we denote by
conc(g,D) the (relative) concave envelope of g on D, i.e. the smallest concave function defined
on Rd which dominates g only on D. Observe that g ≤ h on D is equivalent to g − δD ≤ h on
Rd. Therefore, conc(g,D) always exists as soon as g is dominated by an affine function on D.

The following result allows us to compute the infimum price rather easily.

Lemma 3.6. Let (Su)u≤t−1 be a price process. Suppose that the mapping (ω, z) 7→
gt(S0(ω), . . . , St−1(ω), z) is Ft × B(Rd)-measurable and the function z 7→ gt(S0, . . . , St−1, z) is
l.s.c. almost surely. Consider the concave envelope

ht−1(x) = conc (gt(S0, . . . , St−1, · ), cl(It((Su)u≤t−1)|Ft)) (x).
Then,
pt−1((Su)u≤t−1) = inf {αSt−1 + β : αx+ β ≥ ht−1(x), for all x ∈ cl(It((Su)u≤t−1)|Ft)} . (3.9)

Proof. By definition, ht−1 is the smallest concave function which dominates g. We deduce that
the set of all affine functions dominating g coincides with the set of all affine functions dominating
ht−1. By (3.8) we deduce that (3.9) holds. �

The following result provides a criterion under which the infimum price is a price:

Proposition 3.7. Suppose that AIP holds. Let (Su)u≤t−1 be a price process. Suppose that the
mapping (ω, z) 7→ gt(S0(ω), . . . , St−1(ω), z) is Ft×B(Rd)-measurable and z 7→ gt(S0, . . . , St−1, z)
is l.s.c. almost surely. Moreover, suppose that there exists αt−1 ∈ L0(Rd,Ft) and βt−1 ∈
L0(R,Ft) such that gt(S0, . . . , St−1, z) ≤ αt−1z + βt−1 for all z ∈ conv cl(It((Su)u≤t−1)|Ft)
and consider the concave envelope

ht−1(x) = conc (gt(S0, . . . , St−1, · ), cl(It((Su)u≤t−1)|Ft)) (x). (3.10)
We have pt−1((Su)u≤t−1) ∈ [gt(S0, . . . , St−1, St−1), αt−1St−1 + βt−1]. Moreover, if the super-

differential ∂ht−1(St−1) 6= ∅, then pt−1((Su)u≤t−1) = ht−1(St−1) is a price, i.e. pt−1((Su)u≤t−1) ∈
Pt−1((Su)u≤t−1) with the super-replicating strategies θt−1 ∈ ∂ht−1(St−1).

Proof. It is clear by Lemma 3.6 that pt−1((Su)u≤t−1) ≥ h(St−1) when St−1 belongs to
cl(It((Su)u≤t−1)|Ft). By definition, for all rt−1 ∈ ∂h(St−1) 6= ∅, for all x ∈ conv cl(It(Su)u≤t−1|Ft),

h(x) ≤ h(St−1) + rt−1(x− St−1) =: δ(rt−1, x). (3.11)
Therefore, pt−1((Su)u≤t−1) ≤ δ(rt−1, St−1) = h(St−1), and finally

pt−1((Su)u≤t−1) = h(St−1).
At last, applying (3.11) with x = St ∈ It((Su)u≤t−1) ⊆ cl(It((Su)u≤t−1)|Ft), we deduce that

pt−1((Su)u≤t−1) + rt−1∆St ≥ h(St) ≥ gt(S0, . . . , St−1, St).
Since x 7→ gt(S0, . . . , St−1, x) is l.s.c., we consider the following random set:

Gt := {(ω, rt−1) : δ(rt−1, x) ≥ gt(S0, . . . , St−1, x), ∀ x ∈ conv cl(It(Su)u≤t−1|Ft)},
= {(ω, rt−1) : δ(rt−1, γ

n
t ) ≥ gt(S0, . . . , St−1, γ

n
t ), ∀ n ∈ N},
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where (γnt )n≥1 is a Castaing representation of conv cl(It(Su)u≤t−1|Ft). Since Gt is Ft × B(Rd)-
measurable and Gt 6= ∅ a.s, it admits a measurable selection which is a measurable strategy θt
for the price pt−1((Su)u≤t−1). �

Remark 3.8. As the function ht−1 in (3.10) is concave and finite a.s. on the conditional closure
conv cl(It(Su)u≤t−1|Ft), see proof of Proposition 3.2, the super-differential ∂h(St−1) of ht−1 at
the point St−1 is not empty when St−1 belongs to the interior of conv cl(It(Su)u≤t−1|Ft).

The following result proves the measurability of the infimum super-hedging price
pt−1((Su)u≤t−1) with respect to (Su)u≤t−1. To do so, we suppose the existence of a Castaing
representation, see [21, 28].

Proposition 3.9. Suppose that cl(It((Su)u≤t−1)|Ft) admits a Castaing representation (ξmt )m≥1
where ξmt = xm((Su)u≤t−1), for all m ≥ 1, and xm are Borel functions on (Rd)t independent
of (Su)u≤t−1. Then, there exist a Borel function φt−1 on (Rd)t such that pt−1((Su)u≤t−1) =
φt−1((Su)u≤t−1).

Proof. Let (Su)u≤t−1 be a price process. We denote by

S(t−1) = (Su)u≤t−1 and It−1 = cl(It(S(t−1))|Ft).

Recall that

pt−1(S(t−1)) = inf
(α,β)

{
αSt−1 + β : αx+ β ≥ gt(S(t−1), x), for all x ∈ It−1

}
.

By assumption xm is a Borel function on (Rd)t independent of the price process (Su)u≤t−1. So:

pt−1(S(t−1)) = inf
(α,β)

{
αSt−1 + β : αxm(S(t−1)) + β ≥ gt(S(t−1), xm(S(t−1))), ∀ m

}
= inf

α

{
αSt−1 + f∗t−1(−α,S(t−1))

}
such that f∗t−1(−α,S(t−1)) = supm

[
gt(S(t−1), xm(S(t−1)))− αxm(S(t−1))

]
.

Let us denote Qd = {αn = (αn1 , . . . , αnd ), n ≥ 1, αni ∈ Q} and define the real-valued mapping
φt−1 as φt−1(S(t−1)) = infn

{
αnSt−1 + f∗t−1(−αn,S(t−1))

}
. We claim that

pt−1(S(t−1)) = φt−1(S(t−1)). (3.12)

It is clear that pt−1(S(t−1)) ≤ φt−1(S(t−1)). Conversely, let α ∈ Rd, and αn ∈ Qd a sequence
such that for arbitrary fixed ε ∈ int(Rd

+), we have αn ≥ α and α > αn−ε componentwise. Then,
by definition of f∗t−1, we have:

f∗t−1(−α,S(t−1)) ≥ gt(S(t−1), xm(S(t−1)))− αxm(S(t−1)), ∀ m ≥ 1

≥ gt(S(t−1), xm(S(t−1)))− αnxm(S(t−1)) + (αn − α)xm(S(t−1)), ∀ m ≥ 1.

Notice that xm(S(t−1)) ∈ Rd
+ because xm(S(t−1)) ∈ It−1. So,

f∗t−1(−α,S(t−1)) ≥ gt(S(t−1), xm(S(t−1)))− αnxm(S(t−1)), ∀ m ≥ 1, ∀ n ≥ 1

≥ f∗t−1(−αn,S(t−1)), ∀ n ≥ 1.

Hence,
αSt−1 + f∗t−1(−α) ≥ αSt−1 + f∗t−1(−αn), ∀ n ≥ 1

≥ αnSt−1 + f∗t−1(−αn)− εSt−1, ∀ n ≥ 1
≥ αnSt−1 + f∗t−1(−αn)− εSt−1, ∀ n ≥ 1

≥ φt−1(S(t−1))− εSt−1.
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As ε → 0, we get αSt−1 + f∗t−1(−α) ≥ φt−1(S(t−1)). Therefore, we deduce that pt−1(S(t−1)) ≥
φt−1(S(t−1)). Hence, the equality (3.12) holds, which proves that the infimum super-hedging
price pt−1((Su)u≤t−1) is measurable with respect to the argument (Su)u≤t−1. �

The rest of this section aims to prove that, under some technical conditions, the mapping
(Su)u≤t−1 7−→ pt−1((Su)u≤t−1) is lower-semicontinuous, which is needed to propagate back-
wardly the numerical procedure of Theorem 3.5 in the multi-step model.

Definition 3.10. We say that the mapping
It : (Su)u≤t−1 7−→ cl(It((Su)u≤t−1)|Ft)

is lower-semicontinous if the following property holds: For all sequence of price processes
((Snu )u≤t−1)n≥1 converging a.s. to a process (Su)u≤t−1, and for all z ∈ cl(It((Su)u≤t−1)|Ft),
there exists a sequence (zn)n≥1 such that limn z

n = z and zn ∈ cl(It((Snu )u≤t−1)|Ft) for all
n ≥ 1.

Example 3.11. Suppose that d = 1 and
cl(It((Su)u≤t−1)|Ft) = [mt−1St−1,Mt−1St−1]

where mt−1,Mt−1 ∈ L0(R+,Ft) and mt−1 ≤Mt−1.
Consider z ∈ cl(It((Su)u≤t−1)|Ft), i.e. z = αtmt−1St−1 + (1 − αt)Mt−1St−1 where αt ∈

L0([0, 1],Ft). Let us define zn = αtmt−1S
n
t−1 + (1 − αt)Mt−1S

n
t−1 for all n ≥ 1. Then, zn ∈

cl(It((Snu )u≤t−1)|Ft) and
|zn − z| ≤ 2Mt−1|Snt−1 − St−1|

hence limn z
n = z.

In the following, we define the closed convex random sets
Eεt−1((Su)u≤t−1, z) = B(0, ε) ∩ (cl(It((Su)u≤t−1)|Ft)− z) ,

where B(0, ε) is the closed ball of center z = 0 and radius ε > 0. We say that the mapping
z 7→ Eεt−1((Su)u≤t−1, z) is convex if, for all α ∈ [0, 1], and z1, z2 ∈ Rd, we have

Eεt−1((Su)u≤t−1, αz1 + (1− α)z2) ⊆ αEεt−1((Su)u≤t−1, z1) + (1− α)Eεt−1((Su)u≤t−1, z2).
Note that this convexity property above is automatically satisfied if d = 1.

Proposition 3.12. Consider a payoff function gt defined on (Rd)t+1 such that, there exists
αt−1 ∈ L0((Rd)t+1,Ft) such that gt(x) − gt(y) ≥ αt−1(x − y), x, y ∈ (Rd)t+1. Suppose that
It : (Su)u≤t−1 7−→ cl(It((Su)u≤t−1)|Ft) is lower-semicontinous and that z 7→ Eεt−1((Su)u≤t−1, z)
is convex for all (Su)u≤t−1. Then, (Su)u≤t−1 7−→ pt−1((Su)u≤t−1) is lower-semicontinuous, i.e.
pt−1((Su)u≤t−1) ≤ lim infn pt−1((Snu )u≤t−1) if ((Snu )u≤t−1)n≥1 converges a.s. to (Su)u≤t−1.

Proof. Suppose that ((Snu )u≤t−1)n≥1 converges a.s. to (Su)u≤t−1. By assumption, we know that
for all z ∈ cl(It((Su)u≤t−1)|Ft), there exists a sequence zn ∈ cl(It((Snu )u≤t−1)|Ft) such that
limn zn = z. We may suppose that |z − zn| ≤ ε where ε > 0 is arbitrarily fixed. By assumption,
for all z̃ ∈ cl(It((Snu )u≤t−1)|Ft) in the ball B(z, ε) of center z and radius ε, we have:

gt((Su)u≤t−1, z) ≤ gt((Snu )u≤t−1, z̃) + |αt−1| × |((Su)u≤t−1, z)− ((Snu )u≤t−1, z̃)|,
gt((Su)u≤t−1, z) ≤ gt((Snu )u≤t−1, z̃) + |αt−1| sup

u≤t−1
|Snu − Su|+ |αt−1|ε,

gt((Su)u≤t−1, z) ≤ h(n)(z̃) + |αt−1| sup
u≤t−1

|Snu − Su|+ |αt−1|ε, (3.13)

where h(n) is an arbitrary affine function satisfying h(n)≥gt((Snu )u≤t−1, ·) on cl(It((Snu )u≤t−1)|Ft).
Let us define

h(n)(z) = inf
z̃∈B(z,ε)∩cl(It((Sn

u )u≤t−1)|Ft−1)
h(n)(z̃) + |αt−1| sup

u≤t−1
|Snu − Su|+ |αt−1|ε.
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By convention, we set inf ∅ = −∞. Let us show that h(n) is concave. To see it, observe that
z̃ ∈ B(z, ε) ∩ cl(It((Snu )u≤t−1)|Ft) if and only if z̃ = z + u where u ∈ En(z) = B(0, ε) ∩
(cl(It((Snu )u≤t−1)|Ft)− z) . Therefore,

h(n)(z) = inf
u∈En(z)

h(n)(z + u) + |αt−1| sup
u≤t−1

|Snu − Su|+ |αt−1|ε.

Let z = λz1 + (1−λ)z2. We only need to consider the case where En(z1) 6= ∅ and En(z2) 6= ∅.
We deduce that En(z) 6= ∅. Moreover, by assumption, any u ∈ En(z) may be written as u =
αu1 + (1− α)u2 where ui ∈ En(zi), i = 1, 2. Therefore,

h(n)(z + u) = αh(n)(z1 + u1) + (1− α)h(n)(z2 + u2),

≥ αh(n)(z1) + (1− α)h(n)(z2).

Taking the infimum in the left hand side of the inequality above, we deduce that h(n)(λz1 +
(1− λ)z2) ≥ αh(n)(z1) + (1− α)h(n)(z2), i.e. h(n) is concave.

By (3.13), we deduce that pt−1((Su)u≤t−1) ≤ h(n)(St) for all h(n). As Snt−1 ∈ En(St−1), for n
large enough, under AIP, we deduce that

pt−1((Su)u≤t−1) ≤ h(n)(Snt−1) + |αt−1| sup
u≤t−1

|Snu − Su|+ |αt−1|ε.

Taking the infimum over all affine functions h(n), we get that for n large enough:
pt−1((Su)u≤t−1) ≤ pt−1((Snu )u≤t−1) + |αt−1| sup

u≤t−1
|Snu − Su|+ |αt−1|ε.

As ε is arbitrarily chosen, we may conclude that
pt−1((Su)u≤t−1) ≤ lim inf

n
pt−1((Snu )u≤t−1). �

3.3. Case of a convex payoff function

We shall prove that pt−1((Su)u≤t−1) is a convex function of the price process (Su)u≤t−1 if so
Λt−1 is. In the following, we say that the mapping

Λt−1 : (Su)u≤t−1 7−→ Λt−1((Su)u≤t−1) := conv (cl(It((Su)u≤t−1)|Ft))
is convex for the inclusion if, for λ ∈ [0, 1],

Λt−1((λ((Su)u≤t−1) + (1− λ)((S̃u)u≤t−1) ⊆ λΛt−1((Su)u≤t−1) + (1− λ)Λt−1((S̃u)u≤t−1),

for all price process (Su)u≤t−1, (S̃u)u≤t−1.

Proposition 3.13. Suppose that the mapping
(ω, z) 7−→ gt(S0, S1(ω), . . . , St−1(ω), z) is Ft ⊗ B(Rd) measurable,

non negative and
z 7−→ gt(S0, S1, . . . , St−1, z) is lower semi-continuous and convex almost surely

and suppose that the mapping Λt−1 : (Su)u≤t−1 7−→ Λt−1((Su)u≤t−1) is convex. Then, the map-
ping (Su)u≤t−1 7→ pt−1((Su)u≤t−1) is convex.

Proof. Let (̃Su)u≤t−1, (Su)u≤t−1 be two price processes. Let us define the following price process
(Su)u≤t−1 = λ(Su)u≤t−1 +(1−λ)(̃Su)u≤t−1 for λ ∈ [0, 1]. We consider the following random sets:

Λt−1 = conv (cl(It((Su)u≤t−1)|Ft)) , t ≥ 1,

Λ̃t−1 = conv
(
cl(It((̃Su)u≤t−1)|Ft)

)
, t ≥ 1,

Λt−1 = conv
(
cl(It((Su)u≤t−1)|Ft)

)
, t ≥ 1.
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By assumption, we have Λt−1 ⊆ λΛt−1 + (1− λ)Λ̃t−1 for λ ∈ [0, 1]. Let h and h̃ be two affine
functions such that:

h(x) ≥ gt((Su)u≤t−1, x), ∀ x ∈ Λt−1.

h̃(x̃) ≥ gt((S̃u)u≤t−1, x̃), ∀ x̃ ∈ Λ̃t−1.

Thus, for λ ∈]0, 1[, we have

λh(x) + (1− λ)h̃(x̃) ≥ λgt((Su)u≤t−1, x) + (1− λ)gt((S̃u)u≤t−1, x̃)

≥ gt(λ((Su)u≤t−1) + (1− λ)((S̃u)u≤t−1), λx+ (1− λ)x̃).
Let x ∈ Λt−1 such that x = λx+ (1− λ)x̃. By above, we have:

λh(x) + (1− λ)h̃(x̃) ≥ gt((Su)u≤t−1), x) =: ĝt(x).
Now, let us consider

Ex =
{
λ− 1
λ

Λ̃t−1 + 1
λ
x, λ ∈ ]0, 1[

}
∩ Λt−1.

Observe that αEx1 + (1 − α)Ex2 = Eαx1+(1−α)x2 for all α ∈ [0, 1], and x1, x2 ∈ Rd. Then,
with x = αx1 + (1− α)x1, any x ∈ Ex may be written as x = αx1 + (1− α)x2, where xi ∈ Exi ,
i = 1, 2. As (x, x) 7→ h̃( 1

1−λ(x− λx)) is affine, we deduce that

λh(x) + (1− λ)h̃( 1
1− λ(x− λx)) ≥ α

(
λh(x1) + (1− λ)h̃( 1

1− λ(x1 − λx1))
)

+ (1− α)
(
λh(x2) + (1− λ)h̃( 1

1− λ(x2 − λx2))
)
,

λh(x) + (1− λ)h̃( 1
1− λ(x− λx)) ≥ αĥ(x1) + (1− α)ĥ(x2),

where ĥ(x) = infx∈Ex{λh(x) + (1 − λ)h̃( 1
1−λ(x − λx))}. Therefore, taking the infimum in the

right side of the inequality above, we deduce that ĥ is a (non negative) concave function with
finite values. So, it is continuous and we have ĥ(x) ≥ ĝt(x) for all x ∈ Λt−1. We deduce that

pt−1((Su)u≤t−1) ≤ ĥ(St−1)

≤ λh(St−1) + (1− λ)h̃(S̃t−1), ∀ St−1 ∈ Λt−1, S̃t−1 ∈ Λ̃t−1.

Taking the infimum over all the affine functions h and h̃, we deduce that
pt−1((Su)u≤t−1) ≤ λpt−1((Su)u≤t−1) + (1− λ)pt−1((S̃u)u≤t−1)

and the conclusion follows. �

Remark 3.14. Suppose that the AIP condition holds and that (3.7) holds. Consider
φt−1(u) = infn

{
αnut−1 + f∗t−1(−αn, u)

}
, u = (u0, . . . , ut−1) ∈ (Rd)t, where f∗t−1(−α, u) =

supm [gt(u, xm(u))−αxm(u)]. Recall that, by Proposition 3.9, pt−1((Su)u≤t−1)=φt−1((Su)u≤t−1).
When gt is convex, then φt−1 is convex by Proposition 3.13. Moreover, if gt ≥ 0, 0 ≤ φt−1 <∞
by Proposition 3.7. Then, Domφt−1 = (Rd)t and we deduce that φt−1 is continuous on (Rd)t.

Remark 3.15. Consider the case d = 1. By a measurable selection argument, we may show that
there exists mt−1,Mt−1 ∈ L0([0,∞],Ft) such that

conv (cl(It((Su)u≤t−1)|Ft)) = [mt−1,Mt−1].
By Lemma 3.6, we deduce that under (AIP)

pt−1((Su)u≤t−1) = gt(S0, . . . , St−1,mt−1)

+ gt(S0, . . . , St−1,Mt−1)− gt(S0, . . . , St−1,mt−1)
Mt−1 −mt−1

(St−1 −mt−1). (3.14)
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Moreover, the strategy is given by

θt−1 = gt(S0, . . . , St−1,Mt−1)− gt(S0, . . . , St−1,mt−1)
Mt−1 −mt−1

.

If we suppose that mt−1 = kdt−1St−1 and Mt−1 = kut−1St−1 as in [2], where kdt−1 and kut−1 are
deterministic coefficients, then pt−1((Su)u≤t−1) = gt−1((Su)u≤t−1) with

gt−1(x0, . . . , xt−1) = λt−1gt(x0, . . . , xt−1, k
d
t−1xt−1) + (1− λt−1)gt(x0, . . . , xt−1, k

u
t−1xt−1),

where λt−1 = ku
t−1−1

ku
t−1−k

d
t−1

and gT is the payoff function.
At last, the order to be sent at time t is given by the deterministic mapping defined on Rt by

θt−1(s0, . . . , st−1) =
gt(s0, . . . , st−1, k

u
t−1st−1)− gt(s0, . . . , st−1, k

d
t−1st−1)

(kut−1 − kdt−1)st−1
.

Remark 3.16 (Market impact). It is possible in our model to include a market impact. Indeed,
it suffices to make the order (demand) mapping Dt(x) = θt(x) − θt−1(St−1) coincided at time
t with the supply mapping Ot(x), i.e. the available quantity we may buy or sell at price x in
the order book. By convention, Ot is negative for bid prices and positive for ask prices. It is an
increasing function on R+ starting from Ot(0+) = −∞ at price 0 (we can sell as many assets
as we want to the market at price 0) and ending up with Ot(+∞) = +∞, i.e. we can buy as
many assets as we want to the market at price +∞. As soon as Dt is bounded, there exists
executable bid prices Sbt in the order book such that Dt(Sbt ) ≥ Ot(Sbt ) when Dt(Sbt ) ≤ 0, i.e. the
order may be executed at price Sbt as the quantity |Dt(Sbt )| ≤ |Ot(Sbt )|. The executed bid price
is naturally the best one among all possible. Similarly, there exists executable ask prices Sat in
the order book such that Dt(Sat ) ≤ Ot(Sat ) when Dt(Sat ) ≥ 0 and the order may be executed at
price Sat for the quantity Dt(Sat ) ≤ Ot(Sat ). Note that the executed bid price may be closed to
0 while the executed ask price may be very large. This liquidity phenomenon is then taken into
account in the model through the conditional supports allowing to compute the strategy in our
approach.

3.4. The multistep backward procedure

The main results of Section 3.2 for the one step model may be applied recursively, starting from
time T , as the payoff function gT is known.

Consider the case where the conditional support cl(It((Su)u≤t−1)|Ft) admits a Castaing rep-
resentation (ξm)m≥1 where ξm = xm((Su)u≤t−1), for all m ≥ 1, and xm are Borel functions on
(Rd)t. Then, by Proposition 3.9, we know that the infimum price at time T − 1 is a Borel func-
tion gT−1 of the prices S0, . . . , ST−1. Then, we may repeat the procedure if we are in position
to verify that gT−1 is also l.s.c. This is the case by Proposition 3.13 and Remark 3.14, under
convexity conditions.

Many questions could be investigated for future research, e.g. sensitivity to modeling assump-
tions, but also how to calibrate such a model from statistical estimations. Mainly, we need to
estimate conditional supports. This is illustrated in the numerical example that we propose in
the next section. A technical question is also to consider discontinuous payoff functions even
if this is less usual in finance where g is generally a convex function. Actually, by Lemma 3.6,
we may replace the payoff function by its concave envelope. Note that our analysis is general
enough to consider a lot of models, e.g. with order books.

4. Numerical illustration
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4.1. Formulation of the problem with d = 1

In this section we consider the example of the European call option at time T = 2, i.e. with
the payoff function g(S2) = (S2 − K)+, K > 0. Let (St)t=0,1,2 be the executed price process.
Recall that St belongs to the random set Λt, for t = 0, 1, 2, respectively. We suppose that the
risk-free asset is given by S0 = 1. Recall that there exist Ft+1-measurable closed random sets
It = It((Su)u≤t−1) such that:

Σ(Λt((Su)u≤t−1)) = L0(It((Su)u≤t−1),Ft+1), t = 0, 1, 2.

We may suppose that Λ = Σ(Λ) so that St ∈ It a.s. for t = 0, 1, 2. At each step, we shall apply
the procedure we have developed in the sections above. In particular, we seek for the strategy θ
and we deduce the portfolio value V associated to the executed price process S. Then, we may
estimate the error between the terminal value of V2 and the payoff g2(S2) that we denote by
ε2 = V2 − g2(S2).

We start from a known price S−1 at time t = 0, which corresponds to the last traded price.
We suppose that It = It((Su)u≤t−1) = [St−1mt, St−1Mt], t = 0, 1, 2, where the two random
variables mt and Mt are independent of St−1 and are uniformly distributed as mt ∼ U [0.7, 1]
and Mt = mt + sprt such that sprt ∼ U [0, 0.4] is independent of mt. Observe that m−t = 0.7 and
M+
t = 1.4.
At time t = 0, we choose in our model to pick randomly S0 in the interval I0. Precisely,

S0 = S−1m0 + k0S−1(M0−m0), where k0 is a random variable such that k0 ∼ U [0, 1]. We make
this choice for simplicity and that corresponds to the case where the bid and ask prices of the
market coincide with the mid price S0. The order we sent is of the form buy or sell the quantity
θ0(z) at the price z.

At time t = 1, we choose to model bid and ask prices Sbid1 , Sask1 respectively as: Sbid1 = S0m1
and Sask1 = S0M1 where S0 is the last executed price. Notice that the order of buying or
selling depends on the bid-ask values, see Figure 4.1. We define S∗1 such that ∆θ1(S∗1) = 0. If
Sbid1 ≤ Sask1 ≤ S∗1 (in the green zone {S1 : ∆θ1(S1) ≤ 0}), then S1 = Sbid1 since ∆θ1 ≤ 0. If
S∗1 ≤ Sbid1 ≤ Sask1 , (the yellow zone,) then S1 = Sask1 as ∆θ1 > 0. Otherwise, if Sbid < S∗1 < Sask1 ,
we may arbitrarily choose S1 = Sask1 or S1 = Sbid1 . In our model, we make the (arbitrary) choice
that, if |S∗1 − Sbid1 | ≤ |S∗1 − Sask1 |, then S1 = Sask1 and S1 = Sbid1 otherwise.

Figure 4.1.

At last, we choose S2 = Sask2 = Sbid2 ∈ I2 = [m2S1,M2S1] accordingly to the formula S2 =
S1m2 + k2S1(M2 −m2) where k2 a uniform random variable in the interval [0, 1].

Note that the mapping s1 7→ ∆θ1(s1) is the F1-measurable order we send at time t = 1, see
Figure 4.1. The later depends on S0, which is F1-measurable.
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4.2. Explicit computation of the strategy

We deduce the portfolio value and the strategy value at any time by dominating the payoff
function by the smallest affine function on the conditional support of S, as mentioned in (3.8).
We consider the terminal payoff function g(ST ) = (ST −K)+ for several strikes.

4.2.1. The strategy at time t = 1

Recall that S2 ∈ Λ2(S1) ∼ I2 = [S1m2, S1M2]. In order to compute the strategy θ1 = θ1(S1)
we first compute the function ϕ1 given by (3.8) which dominates the pay-off function g2 on the
conditional support cl(I2(S1)|F2) = [S1m

−
2 , S1M

+
2 ].

1st case: K ∈ [S1m
−
2 , S1M

+
2 ]⇔ S1 ∈

[
K
M+

2
, K
m−

2

]
. The dominating affine function ϕ1, see Fig-

ure 4.2, is given by:

ϕ1(x) = (S1M
+
2 −K)(x− S1m

−
2 )

S1(M+
2 −m

−
2 )

.

So,

V1(S1) = p1(S1) = ϕ1(S1) = (S1M
+
2 −K)(1−m−2 )
M+

2 −m
−
2

=: g1(S1),

and

θ1(S1) = S1M
+
2 −K

S1(M+
2 −m

−
2 )
.

A simple computation shows that:

V2 = V1(S1) + θ1(S1)(S2 − S1) = ϕ1(S2) ≥ g2(S2).

Figure 4.2. Figure 4.3.

2nd case: K ≤ S1m
−
2 ⇔ S1 ≥ K

m−
2
. In this case, we have ϕ1(x) = (x − K)+ for all x ∈

[S1m
−
2 , S1M

+
2 ], see Figure 4.3. Hence, V1(S1) = (S1 −K)+ =: g1(S1) and θ1(S1) = 1.

3rd case: K ≥ S1M
+
2 ⇔ S1 ≤ K

M+
2
. Observe that the dominating affine function ϕ1 coincides

with the x-axis on the support [S1m
−
2 , S1M

+
2 ], see Figure 4.4. Therefore, V1(S1) = g1(S1) := 0

and we deduce that θ1(S1) = 0.
We finally deduce that

g1(x) = (xM+
2 −K)(1−m−2 )
M+

2 −m
−
2

1[
K

M+
2
, K

m+
2

](x) + (x−K)+1[
K

m+
2
,∞
)(x).

The graph of the payoff function g1 is represented in Figure 4.4.
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Figure 4.4.

4.2.2. The strategy at time t = 0

In order to determine the strategy θ0, we compute the smallest affine function ϕ0 that dominates
g1 on the conditional support cl(I1(S0)|F0).

1st case: S0M
+
1 ≤ K

M+
2
, i.e. S0 ≤ K

M+
1 M

+
2
. We have V0(S0) = g0(S0) = 0 and θ0(S0) = 0, see

Figure 4.5.

Figure 4.5. Figure 4.6.

2nd case: S0m
−
1 ≤ K

M+
2

and S0M
+
1 ∈ [ K

M+
2
, K
m−

2
], i.e. S0 ∈ [ K

M+
1 M

+
2
, K
m−

1 M
+
2
∧ K
m−

2 M
+
1

]. We find that
(see Figure 4.6):

ϕ0(x) = (S0M
+
1 M

+
2 −K)(1−m−2 )

S0(M+
1 −m

−
1 )(M+

2 −m
−
2 )

(x− S0m
−
1 ).

So,

V0(S0) = ϕ0(S0) = (S0M
+
1 M

+
2 −K)(1−m−2 )(1−m−1 )

(M+
2 −m

−
2 )(M+

1 −m
−
1 )

=: g0(S0),

and

θ0(S0) = (S0M
+
1 M

+
2 −K)(1−m−2 )

S0(M+
2 −m

−
2 )(M+

1 −m
−
1 )
.

3rd case: S0m
−
1 ≤ K

M+
2

and S0M
+
1 ≥ K

m−
2
, i.e. S0 ∈ [ K

m−
2 M

+
1
, K
m−

1 M
+
2

]. We have, see Figure 4.7:

ϕ0(x) = S0M
+
1 −K

S0(M+
1 −m

−
1 )

(x− S0m
−
1 ).

So,

V0(S0) = ϕ0(S0) = (S0M
+
1 −K)(1−m−1 )
M+

1 −m
−
1

=: g0(S0), θ0(S0) = S0M
+
1 −K

S0(M+
1 −m

−
1 )
.
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Figure 4.7. Figure 4.8.

4th case: S0m
−
1 ∈ [ K

M+
2
, K
m−

2
] and S0M

+
1 ∈ [ K

M+
2
, K
m−

2
], i.e. S0 ∈ [ K

m−
1 M

+
2
, K
m−

2 M
+
1

]. We have ϕ0(x) =
g1(x), for all x ∈ cl(I1(S0)|F0), see Figure 4.8. Therefore,

V0(S0) = ϕ0(S0) = (S0M
+
2 −K)(1−m−2 )
M+

2 −m
−
2

=: g0(S0), θ0(S0) = M+
2 (1−m−2 )
M+

2 −m
−
2

.

5th case: S0m
−
1 ∈ [ K

M+
2
, K
m−

2
] and S0M

+
1 ≥ K

m−
2
, i.e. S0 ∈ [ K

m−
1 M

+
2
∨ K
m−

2 M
+
1
, K
m−

1 m
−
2

]. We obtain
that (see Figure 4.9):

ϕ0(x) = (S0M
+
1 −K)(M+

2 −m
−
2 )− (S0m

−
1 M

+
2 −K)(1−m−2 )

S0(M+
1 −m

−
1 )(M+

2 −m
−
2 )

x

+ −m
−
1 (S0M

+
1 −K)(M+

2 −m
−
2 ) +M+

1 (S0m
−
1 M

+
2 −K)(1−m−2 )

(M+
1 −m

−
1 )(M+

2 −m
−
2 )

.

Figure 4.9. Figure 4.10.

Then,

V0(S0) = ϕ0(S0) =: g0(S0)

= (S0M
+
1 −K)(M+

2 −m
−
2 )(1−m−1 )− (S0m

−
1 M

+
2 −K)(1−m−2 )(1−M+

1 )
(M+

1 −m
−
1 )(M+

2 −m
−
2 )

and

θ0(S0) = (S0M
+
1 −K)(M+

2 −m
−
2 )− (S0m

−
1 M

+
2 −K)(1−m−2 )

S0(M+
2 −m

−
2 )(M+

1 −m
−
1 )

.

6th case: S0m
−
1 ≥ K

m−
2

and S0M
+
1 ≥ K

m−
2
, i.e. S0 ≥ K

m−
2 m

−
1
. We have V0(S0) = (S0 − K)+ =:

g0(S0) and θ0(S0) = 1, see Figure 4.10.
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4.3. Empirical results

For an observed price S−1 at time t = 0 (which corresponds to the last traded price), and for
different strike values K, we test the infimum super-hedging strategy by computing the relative
error εR from a data set of 106 simulated prices St for t ∈ 0, 1, 2. To do so, we wrote a script in
Python. The relative error is given by

εR = V2 − (S2 −K)+

S2
.

In the following table 4.11, empirical results are presented for different values of the strike K
and a sample of 106 scenarios.

K 50 75 100 125 150
E(S0) 95.002 94.983 95.006 94.98 95.001
E(S1) 99.56 94.94 87.085 82.104 81.736
E(S2) 94.56 90.180 82.716 78.01 77.664
E(V0) 46.503 29.357 16.960 11.244 6.7
max V0 89.677 66.72 49.726 33.05 22.562
E(V (S0)/S−1) 0.465 0.294 0.170 0.112 0.067
E(V (S0)/S0) 0.483 0.300 0.173 0.114 0.066
min(V (S0)/S0) 0.359 0.163 0.098 0.032 0
max(V (S0)/S0) 0.642 0.479 0.358 0.237 0.162
E(εR) 0.017 0.077 0.076 0.064 0.039
σ(εR) 0.024 0.045 0.04 0.037 0.0317
min εR 0 2.23 ∗ 10−6 1, 9 ∗ 10−7 5.975 ∗ 10−8 0
max(εR) 0.18 0.19 0.195 0.187 0.187
E(θ0S0/V0) 199% 255% 322% 333% 313%
E(θ1S1/V1) 205% 230% 134% 32% 3%

Figure 4.11. The empirical results.

We observe that the executed prices depend on the strike K > 0, i.e. there is a market
impact of the orders on the prices. Indeed, as expected, the orders we send depend on the payoff
function. As K increases, the payoff decreases and, as expected, the option price V0 decreases.
The distribution of S1 admits two regimes as seen in Figure 4.13 that correspond to the bid and
ask prices.

Notice that the proportion of the portfolio value invested in the risky assets at time t = 1
decreases as the payoff decreases. We also observe that this proportion decreases (resp. increases)
when the price S decreases (resp. increases) between time t = 0 and t = 1, i.e. when ∆S1 < 0
(resp. ∆S1 ≥ 0). At last, the empirical results obtained for the relative error confirm the efficiency
of the super-hedging strategy, see Figure 4.15.
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Figure 4.12. Figure 4.13. K=100.

Figure 4.14. K=100. Figure 4.15. K=100.
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