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Abstract

We introduce a model of parasite infection in a cell population, where cells can be infected, either at
birth through maternal transmission, from a contact with the parasites reservoir, or because of the parasites
released in the cell medium by infected cells. Inside the cells and between infection events, the quantity of
parasites evolves as a general non linear branching process. We study the long time behaviour of the infection.

Introduction

The aim of this paper is to complement the study of parasite or viral infection in a cell population
conducted in [7, 9, 22] by adding possible reinfections, either due to new contacts of the cell
population with the reservoir of the pathogen, or within the cell population, due to the pathogens
released in the medium by infected cells.

Many pathogens, in particular the ones responsible for emerging infectious diseases, are trans-
mitted both between and within a host community. The Oxford Textbook of Global Public
Health [12] defines the reservoir of a pathogen as “any person, other living organism, or inan-
imate material in which the infectious agent normally lives and grows”. The epidemiological
dynamics of infectious diseases is highly dependent on the transmission from the reservoir [31],
and the start of an outbreak is promoted by a primary contact between the reservoir and the
incidental host (i.e. a host that becomes infected but is not part of the reservoir) leading to the
potential transmission of the infection to the host population. We aim at taking into account
such mechanisms.

We will thus assume that a cell population may be recurrently infected by contacts of the cells
with a reservoir, and that the pathogens may also be transmitted within the cell population,
either when a cell divides into two daugther cells receiving respectively a fraction Θ and 1−Θ of
the pathogens of their mother, or when pathogens are extruded from the cells. In this work, the
cell death and division rates do not depend on the quantity of pathogens in the cells, but the
quantity of pathogens released in the medium depends on the quantity of pathogens in the cell
population. A generalization to death and division rates dependent on the quantity of pathogens
in the cell could be the subject of future work. This simplification follows from the difficulty to
obtain an explicit spinal process (see later).

We have two examples in mind:

(1) Bacteriophages M13: Bacteriophages are a class of viruses infecting bacteria. They show
applicability in the field of gene delivery [18]. Bacteriophages M13 have been commonly
used to display vaccine antigens (for instance hepatitis B mimotopes [25] or Plasmodium
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vivax surface protein mimotopes [3]). Their multiplication begins immediately upon in-
fection [10], and they are continually assembled at, and extruded through, the cell wall
into the medium [29]. The host cell is not killed and continues to divide, albeit at a
reduced rate [30].

(2) The class of encapsulated viruses is also a good example for our model. They can cause
persistent infection as they usually not kill the cell to be extruded. The high immunolog-
ical flexibility of envelope proteins allows some enveloped viruses to multiply in different
host species. Viruses transmitted by arthropods (e.g. mosquitoes or mites), known as ar-
boviruses, are mostly enveloped viruses. Viruses are particularly pathogenic when they
occur in a new host population, where no immunity to them exists. For this reason,
enveloped viruses, which are particularly easy to transmit from animals to humans, have
a particularly high potential to cause new infections in humans. Examples of enveloped
viruses include COVID-19, Influenza, Hepatitis B and C, and Ebola Virus Disease.

The dynamics of the quantity of parasites in a cell will be given by a Stochastic Differential
Equation (SDE) with a diffusive term and positive jumps. Then, after an exponential time, the
cell dies, or divides and shares its parasites between its two daughter cells. We are interested in
the long time behaviour of the parasite infection in the cell population. More precisely, we give
bounds on the fraction of cells containing a small, large, finite or infinite quantity of parasites,
depending on the assumptions under consideration. We refer to [22] for references on biological
studies and on previous mathematical works on the class of processes under study. In particular,
references [1, 2, 4, 5, 17, 24, 26] focused on branching within branching to study host-parasites
dynamics. Similarly as in [6, 11, 14, 15, 20, 22], the proof strategy consists in introducing a
spinal process, and investigating the long time behaviour of this process that corresponds to
the trait of a uniformly sampled individual in the population. Via a Many-to-One formula (see
Proposition 1.2), we may deduce properties on the long time behaviour of the process at the
population level. Even if the cell division rate does not depend on the quantity of parasites, the
spinal process may be non-homogeneous, because of the reinfection mechanism.

The model considered here is close to a recent paper, in collaboration with Aline Marguet [22].
Some parts of the dynamics are simplified, as cell birth and death rates do not depend on the
quantity of parasites in the cell, and we do not allow stable jumps. The novelty of the current
model is to take into account the possibility of reinfections by the reservoir and the parasites
released in the cell medium by infected cells, and to study the impacts of these two ways of
reinfection on the long term behaviour of the infection. We will use results stated in a previous
paper with the same coauthor [21] to derive properties of the auxiliary process, in particular its
behaviour close to infinity (see Conditions (SN∞) and (LN∞) on page 28).

In the sequel N := {0, 1, 2, . . . } will denote the set of nonnegative integers, R+ := [0, ∞)
the real line, R+ = R+ ∪ {∞} and R∗

+ := (0, ∞). We will denote by C2
b (A) the set of twice

continuously differentiable bounded functions on a set A. Finally, for any stochastic process X
on R+ or Z on the set of point measures on R+, and any real function f on R+, we will denote
by Ex [f(Xt)] = E

[
f(Xt)

∣∣X0 = x
]
, E [f(Xt)] = E0 [f(Xt)] and Eδx [f(Zt)] = E

[
f(Zt)

∣∣Z0 = δx
]
.

1. Definition of the population process

1.1. Parasites dynamics in a cell

Each cell contains parasites whose quantity evolves as a diffusion with positive jumps. More
precisely, we consider the SDE

Xt = x +
∫ t

0
g(Xs)ds +

∫ t

0

√
2σ2(Xs)dBs +

∫ t

0

∫ p(Xs− )

0

∫
R+

zQ̃(ds, dx, dz), (1.1)
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where x is nonnegative, g, σ ≥ 0 and p ≥ 0 are real functions on R+, B is a standard Brownian
motion, Q is a Poisson Point measure with intensity ds ⊗ dx ⊗ π(dz), Q̃ the corresponding
compensated measure, and π is a nonnegative measure on R+. Finally, B and Q are independent.

Be choosing such a dynamics we aim at obtaining a model as general as possible. This is a
generalisation of continuous state branching processes, in which a dependence of growth rates
and fluctuations on the state of the population is allowed, in order to model, for example, a
competition for resources or space, or a mutualistic interaction (see [19] for the introduction of
this kind of processes). The diffusive term allows to take into account moderate size birth events,
and the jump term allows to take into account large birth events (see [8] for a characterisation
of the scaling limits of Galton–Watson processes with different types of birth events).

Under our conditions (see later), the SDE (1.1) has a unique non-negative strong solution. In
this case, it is a Markov process with infinitesimal generator G, satisfying for all f ∈ C2

b (R+),

Gf(x) = g(x)f ′(x) + σ2(x)f ′′(x) + p(x)
∫
R+

(
f(x + z) − f(x) − zf ′(x)

)
π(dz), (1.2)

and 0 and +∞ are two absorbing states. Following [20], we denote by (Φ(x, s, t), s ≤ t) the
corresponding stochastic flow i.e. the unique strong solution to (1.1) satisfying Xs = x and the
dynamics of the trait between division events is well-defined.

1.2. Cell division and death

Each cell divides at rate b and is replaced by two cells with quantity of parasites at birth given by
Θx and (1−Θ)x. Here Θ is a nonnegative random variable on (0, 1) with symmetric distribution
κ(dθ) (that is to say

∫ 1
0 f(θ)κ(dθ) =

∫ 1
0 f(1 − θ)κ(dθ) for any function f continuous on [0, 1]).

Finally, each cell dies at rate d.

1.3. Reinfection

New parasites can enter cells through two distinct mechanisms:

• either the population comes into contact with the reservoir of the parasite and each
cell is infected at a rate λ( · ) by a quantity of parasites i that follows a law I. This
rate may depend on the quantity of parasites in the cell. An increasing rate with the
quantity of parasites could indicate that the cell’s defences are weakened or that the
parasite is altering the properties of its host to facilitate infection by new parasites. A
decreasing rate could mean that the immune system has detected the parasite and is
taking measures to limit the infection;

• or the cells are infected by parasites released by other cells in the medium. The rate of in-
fection at time t (parametrised by the function r( · )) then depends on the mean quantity
of parasites present in the cell population at time t divided by the mean number of cells
at time t, e(b−d)t. Ideally, it would be convenient to make the reinfection rate dependent
on the quantity of parasites and not its expectation, but the equations obtained would
not be closed and the dynamics of the infection could not be studied (see Remark 1.3).
The quantity p of parasites entering a cell during such an infection event follows a law P.

1.4. Existence and uniqueness

We use the classical Ulam–Harris–Neveu notation to identify each individual. Let us denote by

U :=
⋃

n∈N
{0, 1}n

25



Charline Smadi

the set of possible labels, MP (R+) the set of point measures on R+, and D(R+, MP (R+)), the
set of càdlàg measure-valued processes. For any Z ∈ D(R+, MP (R+)), t ≥ 0, we write

Zt =
∑
u∈Vt

δXu
t
, (1.3)

where Vt ⊂ U denotes the set of individuals alive at time t and Xu
t the trait at time t of the

individual u. We also write, for a function f on R+,

⟨f, Zt⟩ =
∑
u∈Vt

f(Xu
t ).

Let E = U × (0, 1) × R+, Er1 = Er2 = U × R+ × R+ and M(ds, du, dθ, dz), Mr1(ds, du, di, dz),
Mr2(ds, du, dp, dz) be independent Poisson Point measures on R+ ×E, R+ ×Er1, R+ ×Er2 with
respective intensity ds × n(du) × κ(dθ) × dz, ds × n(du) × I(di) × dz, ds × n(du) ×P(dp) × dz,
where n(du) denotes the counting measure on U . Let

(
Φu(x, s, t), u ∈ U , x ∈ R+, s ≤ t

)
be a

family of independent stochastic flows satisfying (1.1) describing the individual-based dynamics.
We assume that M , Mr1, Mr2 and (Φu, u ∈ U) are independent. We denote by (Ft, t ≥ 0) the
filtration generated by the Poisson Point measures M , Mr1 and Mr2 and the family of stochastic
processes (Φu(x, s, t), u ∈ U , x ∈ R+, s ≤ t) up to time t.

We now introduce assumptions to ensure the existence and strong uniqueness of the process.
Points (i) to (iii) of Assumption EU (for Existence and Uniqueness) ensure that the dynamics
in a cell line is well defined between the reinfection times (as the unique nonnegative strong
solution to the SDE (1.1) up to explosion, and infinite value of the quantity of parasites after
explosion); point (iv) ensures that a cell has a higher probability to be infected when there are
more parasites in the cell medium, and that if there is no parasite in the cell population, there
is no reinfection.

Assumption EU.

(i) The function p is locally Lipschitz on R+, non-decreasing and p(0) = 0. The function g
is continuous on R+, g(0) = 0 and for any n ∈ N there exists a finite constant Bn such
that for any 0 ≤ x ≤ y ≤ n

|g(y) − g(x)| ≤ Bnϕ(y − x), where ϕ(x) =
{

x (1 − ln x) if x ≤ 1,

1 if x > 1.

(ii) The function σ is Hölder continuous with index 1/2 on compact sets and σ(0) = 0.

(iii) The measure π satisfies
∫∞

0 (z ∧ z2)π(dz) < ∞.

(iv) r and λ are continuous, r is non-decreasing and bounded,
∫∞

0 iI(di) +
∫∞

0 pP(dp) < ∞,
and r(0) = 0.

Recall the definition of G in (1.2). Then the structured population process may be defined as
the strong solution to a SDE.

26



Parasite infection in a cell population

Proposition 1.1. Under Assumption EU there exists a strongly unique Ft-adapted càdlàg pro-
cess (Zt, t ≥ 0) taking values in MP (R+) such that for all f ∈ C2

b (R+) and x0, t ≥ 0,

⟨Zt, f⟩ = f (x0) +
∫ t

0

∫
R+

Gf(x)Zs (dx) ds + Mf
t (x0)

+
∫ t

0

∫
E
1{u∈Vs−}

(
1{z≤b} (f (θXu

s−) + f ((1 − θ)Xu
s−)) − 1{z≤b+d}f (Xu

s−)
)

M (ds, du, dθ, dz)

+
∫ t

0

∫
Er1

1{u∈Vs−}

(
1{

z≤λ(Xu
s− )
} (f (Xu

s− + i) − f (Xu
s−))

)
Mr1 (ds, du, di, dz)

+
∫ t

0

∫
Er2

1{u∈Vs−}

(
1{

z≤r
(

e−(b−d)sEδx0
[⟨Zs,Id⟩]

)}f (Xu
s− + p) − f (Xu

s−)
)

Mr2 (ds, du, dp, dz) ,

where for all x ≥ 0, Mf
t (x) is a Ft-martingale, and Id denotes the identity function.

We always assume that there is one cell at time 0. e(b−d)s is thus the mean number of cells
at time s, and e−(b−d)sE[⟨Zs, Id⟩] is the mean quantity of parasites in the population divided by
the mean number of cells at time s.

The proof of Proposition 1.1 is a combination of [27, Proposition 1] and [20, Theorem 2.1]. It is
essentially the same as the proof of Proposition 1.1 in [22] and we refer the reader to this paper.
The only difference is the addition of the reinfection events. Reinfection events due to the release
of parasites in the cell medium have a bounded rate (as r is bounded), thus we can construct
the solution between these reinfection events, choose uniformly the cell which undergoes the
infection, add the quantity of parasites in the cell, and reiterate the procedure until the next
infection event of this type occurs. Due to the dynamic of the number of parasites in the cells
(given by G), the quantity of parasites may reach infinity in a cell u0 for instance. But in this
case,

1{u0∈Vs−}

(
1{

z≤λ(Xu0
s− )
}(f

(
Xu0

s− + i
)

− f
(
Xu0

s−

)))
= 1{u0∈Vs−}

(
1{z≤λ(∞)}f (∞) − f (∞)

)
= 0

for any time s after the time when Xu0 reaches infinity. The reinfection events due to the
reservoir thus do not contribute anymore to the dynamics when they concern a cell with an
infinite quantity of parasites, even if λ is not bounded.

For the sake of readability we will assume that the processes under consideration in the sequel
satisfy Assumption EU, and the conditions given in the cell division and death, but we will not
indicate it.

We aim at investigating the long time behaviour of the infection in the cell population. As we
have explained in the introduction, the strategy to obtain information at the population level
is to introduce an auxiliary process behaving as a “typical individual”. A slight adaptation of
Theorem 3.1 in [20] and Proposition 1 in [27] allows us to obtain the following Many-to-One
formula (see ideas of the proof on page 31):

Proposition 1.2. Let the process Z be defined as in Proposition 1.1, and recall notation (1.3).
Then for x0 ≥ 0 and all measurable bounded functions F : D([0, t],R+) → R, we have:

Eδx0

∑
u∈Vt

F (Xu
s , s ≤ t)

 = e(b−d)tEx0 [F (Ys, s ≤ t)], (1.4)

where we recall that for s ≤ t, Xu
s denotes the trait of the ancestor of individual u ∈ Vt at time

s. In (1.4), Y = (Yt : t ≥ 0) is a time inhomogeneous diffusion with jumps, which is the unique
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non-negative strong solution to

Yt = x0 +
∫ t

0
g(Ys)ds +

∫ t

0

√
2σ2(Ys)dBs +

∫ t

0

∫ p(Ys−)

0

∫
R+

zQ̃(ds, dx, dz)

+
∫ t

0

∫ 2b

0

∫ 1

0
(θ − 1)Ys−N(ds, dx, dθ) +

∫ t

0

∫ r(Ex0 [Ys])

0

∫
R+

pN1(ds, dx, dp)

+
∫ t

0

∫ λ(Ys−)

0

∫
R+

iN2(ds, dx, di), (1.5)

where N(ds, dx, dθ), N1(ds, dx, dp) and N2(ds, dx, di) are independent Poisson Point Measures
with intensities ds × dx × κ(dθ), ds × dx × P(dp) and ds × dx × I(di), and Q and B have been
defined in (1.1). N , N1, N2, Q and B are independent.

We notice that a “typical” lineage (i.e. following the auxiliary process) divides twice as fast
as a lineage that would be followed over time (2b instead of b). This bias is due to the fact
that when a cell is chosen uniformly at random at a given time, one is more likely to choose
a cell belonging to a lineage that has divided a lot. The doubling is due to the fact that one
cell produces two daughter cells, and for a process with a random number of offspring at each
reproduction, the bias corresponds to the average number of offspring (see [6] for more details).

We also notice that the death rate, d, is not present in the law of the auxiliary process. This
is because the death rate of a cell does not depend on the amount of parasites it contains, and
so cell deaths do not alter the law of the proportion of cells with a given amount of parasites
(see the proof of Proposition 1.2 for more details).

Remark 1.3. Suppose that we take r(Zs) (same conclusion with r(e−(b−d)s⟨Zs, Id⟩)) instead of
r(e−(b−d)sEδx0

[⟨Zs, Id⟩]) in the SDE giving the process dynamics in Proposition 1.1, in order to
take into account the quantity of parasites in the cell medium instead of it expectation. If we
introduce the process (Wt := e−(b−d)tZt, t ≥ 0), Itô formula gives, for f ∈ C2

b (R+) and t ≥ 0,

dE [⟨Wt, f⟩]
dt

= E [⟨Wt, Gf⟩] + 2bE [⟨Wt, f(Θ.) − f( · )⟩]

+ E [⟨Wt, λ( · )(f( · + I) − f( · ))⟩] + E
[
⟨Wt, r(Wte

(b−d)t)(f( · + P) − f( · ))⟩
]

,

where P (resp. I) denotes a random variable with law P (resp. I). The interaction appearing
in the last term impedes finding an auxiliary process Y satisfying Proposition 1.2. This is why
we made this simplification.

2. Results

We will now study how the interactions between the parasites growth rate, fluctuations and
positive jumps, the rate and intensity of reinfections and the cell division rate and law shape
the long time behaviour of the infection. To this aim, we define the function

ρ(x) := E[I]λ(x) + E[P]r(x) + g(x) − bx, x ≥ 0. (2.1)
To know if the quantity of parasites can explode (reach ∞ in a finite time), we will contrast

the two following assumptions:

(SN∞) There exist a < 1 and a non-negative function f on R+ such that
D(a, x) = −f(x) + o(ln x), (x → +∞).

(LN∞) There exist a ∈ A, η > 0 and x > 0 such that for all x ≥ x

D(a, x) ≥ ln x (ln ln x)1+η .
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Here,
A := {a > 1,E[Θ1−a] < ∞}, (2.2)

and for a ̸= 1 ∈ R∗
+ and x > 0,

Ia(x) = ax−2
∫
R+

z2
(∫ 1

0
(1 + zx−1v)−1−a(1 − v)dv

)
π(dz) (2.3)

and
D(a, x) := g(x)

x
− a

σ2(x)
x2 − p (x)Ia(x) + λ(x)E[(1 + I/x)1−a] − 1

1 − a
. (2.4)

Condition (SN∞) ensures that Y does not explode, whereas under Condition (LN∞), the process
Y has a positive probability to reach ∞ in finite time (see [21] for the introduction of these
conditions, being a refinement of conditions introduced in [19]).

We will assume in the sequel that E[ln 1/Θ] < ∞.

2.1. Controlled or uncontrolled infection

First, we want to know whether the amount of parasites in the cells remains bounded.
Notice that under the assumptions of point (1) of the following proposition, Condition (SN∞)

holds. Depending on the relative strengths of the functions g, p, σ, λ and the parameter b, we
may obtain contrasted long time behaviours for the infection in the cell population.

Proposition 2.1. Let the process Z be defined as in Proposition 1.1, with Z0 = δ0, and Nt =
⟨Zt, 1⟩ denote the number of cells alive at time t ≥ 0.

(1) If there exists x such that for x ≥ x, g(x) + E[I]λ(x) ≤ g̃x with g̃ < b, then there exists
a constant C such that for any K, t ≥ 0,

Eδ0

1{Nt≥1}

∑
u∈Vt

1{X
(u)
t ≥K}

Nt

 ≤ C√
K

.

Notice that point (1) implies that for any t ≥ 0

lim
K→∞

1{Nt≥1}

∑
u∈Vt

1{X
(u)
t ≥K}

Nt
= 0, in probability.

(2) If there exists g̃ > b such that g(x)+E[I]λ(x) ≥ g̃x for any x > 0, then for every K ≥ 0,

lim
t→∞

1{Nt≥1}

∑
u∈Vt

1{sups≤t X
(u)
s ≤K}

Nt
= 0, in probability.

(3) Under Condition (LN∞) and if λ(x) > 0 for any x ∈ R∗
+,

lim
t→∞

1{Nt≥1}

∑
u∈Vt

1{X
(u)
t <∞}

Nt
= 0, a.s.

Thus, in the first case, the proportion of cells containing a large amount of parasites is small,
when considering any given time. In the second case, on the contrary, when the time is large, the
lineage of each cell alive at time t has contained a high number of parasites at a given time with
high probability. The third case is even more extreme as the quantity of parasites in most of the
cells reaches infinity. One could imagine that the presence of a large number of parasites in a cell
disturbs the functioning of this latter. The second and third cases could therefore correspond to
the death of a large fraction of the cells for example if we allowed the cell death rate to depend
on the quantity of parasites.

Interestingly, the parasite growth rate g( · ) and the infection by the reservoir E[I]λ( · ) have
a similar role in the quantity of parasites on the long term (increasing any of them has the
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same impact on the criteria of points (1) and (2)). This highlights the importance of taking into
account reinfections by the reservoir (or similarly the immigration of infected individuals) when
studying an epidemics.

2.2. The case without reservoir

We now wonder if the cell population is able to get rid of the infection in the case where it is not
reinfected by new contacts with the parasites reservoir after the first infection of the population.

Proposition 2.2. Let Z and N be defined as in Proposition 1.1. Assume that λ( · ) ≡ 0.

(1) Assume that g is a concave function and there exist α, η > 0 such that
ρ(x) ≤ −(αx ∧ η), x ≥ 0. (2.5)

Then for every ε > 0 and Z0 = δx0 with x0 < ∞,

lim
t→∞

1{Nt≥1}

∑
u∈Vt

1{X
(u)
t >ε}

Nt
= 0, in probability.

(2) Under Condition (LN∞) and if r(x0) > 0,

lim
t→∞

1{Nt≥1}

∑
u∈Vt

1{X
(u)
t <∞}

Nt
= 0, a.s. when Z0 = δx0 .

When λ( · ) ≡ 0, ρ writes
ρ(x) = E[P]r(x) + g(x) − bx, x ≥ 0.

Hence, when the cell division rate outweighs the growth of the parasites and the reinfections by
parasites present in the medium, the quantity of parasites goes to 0 in a fraction of the cells
close to 1. When, on the contrary, parameters of parasites growth and reinfection are larger than
the cell division rate, the quantity of parasites goes to ∞ in a fraction of the cells close to 1.

The concavity of g seems a reasonable assumption. Indeed it means that there is a negative
interaction between parasites, which may be due for instance to competition for space, or to the
activation of the immune system. A logistic growth rate for example meets this assumption.

2.3. Coming down from infinity

We now assume that parasites present in the cell medium do not reinfect other cells, for example
because the immune system destroys them before they can attack other cells. However, we
suppose that the cell population is frequently in contact with the parasite living in another
environment (the reservoir). We investigate under which conditions on the frequency and rate
of infection and on the dynamics of the parasites within each cell, the cell population is able to
control the size of the parasites proliferation.

Recall the definition of the function D(a, · ) in (2.4). Then we have the following result.

Proposition 2.3. Let the process Z be defined as in Proposition 1.1. Assume that r( · ) ≡ 0.

(1) If there exist a ∈ A and a non-negative function f such that
D(a, x) ≥ f(x) + o(ln x), (x → ∞), (2.6)

then for every K, t ≥ 0,

lim
x→∞

Eδx

1{Nt≥1}

∑
u∈Vt

1{X
(u)
t ≤K}

Nt

 = 0.
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(2) If there exist 0 < a < 1 and η > 0, such that

D(a, x) ≤ − ln x(ln ln x)1+η, (x → ∞), (2.7)

then for every x, t ≥ 0,

lim
K→∞

Eδx

1{Nt≥1}

∑
u∈Vt

1{X
(u)
t ≥K}

Nt

 = 0.

There is thus an interplay between the increase of the number of parasites (by growth (g) or
reinfection by the reservoir (λ)) and the fluctuations of the number of parasites (characterized
by σ and p), which tend to decrease the number of parasites. This interplay is fully characterized
by the class of functions (D(a, · ), a ̸= 1).

If g and λ are large enough, the cell population is not able to get rid of the parasites when
they are initially numerous (x large) and the quantity of parasites is large in a fraction of the
cells close to 1. If on the contrary the noise, characterized by σ and p, outweighs the parasites
growth and reinfection, the cell population succeeds in containing the infection.

3. Proofs

3.1. Proof of Proposition 1.2 and preliminary lemma

We first explain how the proofs of Proposition 1 in [27] and Theorem 3.1 in [20] must be modified
to obtain Proposition 1.2.

Proof of Proposition 1.2. The existence and strong unicity of a solution to (1.5) are a conse-
quence of Proposition 1 in [27], and accordingly, (Yt, t ≥ 0) is a [0, ∞]-valued process, which
satisfies (1.5) up to the time τn := inf{t ≥ 0 : Yt ≥ n} for all n ≥ 1, and Yt = ∞ for all
t ≥ τ∞ := limn→∞ τn. Notice that the process Y is not Markovian, as r(E[Yt]) is time depen-
dent. In the statement of Proposition 1 in [27], the functions do not depend on time, unlike the
case of our process. However this additional dependence does not bring any modification to the
proofs (see [22, Appendix B] for more details).

The proof of the Many-to-One formula (1.4) is obtained by a slight modification of the proof of
Theorem 3.1 in [20]. There are essentially three differences with the result of Theorem 3.1 in [20].
First a simplification: the division rate b does not depend on the quantity of parasites in the
cells, which makes equations simpler. Second, the reinfection by parasites in the medium (resp.
in the reservoir), which can be seen, at time t, as the death of a cell u ∈ Vt with a quantity Xu

t of
parasites and the birth of a cell with a quantity Xu

t +I of parasites, I following the distribution
I (resp. a quantity Xu

t + P of parasites, P following the distribution P). The point is that,
contrarily to the case considered in [20], this additional division rate is time inhomogeneous,
and unlike the division rate b it may depend on the quantity of parasites. However it does not
impact the mean number of cells, and the adaptation of the proof to this case is not difficult.
The last difference is that we allow for the death of cells without producing any daughter cell.
Here again the adaptation is fairly simple, because this death rate, d, does not depend on the
quantity of parasites in the cell. To fix ideas, these modifications would lead to the following
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equivalent of Equation (3.8) in [20]:

µt0,s(x0, f) = f(t0, x0) +
∫ s

t0

∫
R+

[Gf(r, x) − (b − d)f(r, x) + ∂rf(r, x)] µt0,r(x0, dx)dr

+
∫ s

t0

∫
R+

[
2b

∫ 1

0
f(r, θx)κ(dθ) − (b + d)f(r, x)

]
µt0,r(x0, dx)dr

+
∫ s

t0

∫
R+

[
r(E[Yr|Yt0 = x0])

∫
R+

(f(r, x + p) − f(r, x))P(dp)
]

µt0,r(x0, dx)dr

+
∫ s

t0

∫
R+

[
λ(x)

∫
R+

(f(r, x + i) − f(r, x))I(di)
]

µt0,r(x0, dx)dr.

We see that the terms involving d cancel out. This explains why the death rate does not impact
the dynamics of Y . Intuitively this is due to the fact that the death rate is constant. Hence
all individuals die with the same probability and the behaviour of a “typical individual” is not
modified. □

We may now prove the results on the long time behaviour of the infection presented in
Section 2.

Let us recall the definition of (Yt, t ≥ 0) in (1.5), and introduce the process (Y t, t ≥ 0),
solution to the SDE

Y t = x0 +
∫ t

0
g(Y s)ds +

∫ t

0

√
2σ2(Y s)dBs +

∫ t

0

∫ p(Y s−)

0

∫
R+

zQ̃(ds, dx, dz)

+
∫ t

0

∫ 2b

0

∫ 1

0
(θ − 1)Y s−N(ds, dx, dθ)

+
∫ t

0

∫ r(y)

0

∫
R+

pN1(ds, dx, dp) +
∫ t

0

∫ λ(Y s−)

0

∫
R+

iN2(ds, dx, di), (3.1)

where the Brownian B and the Poisson random measures Q, N , N1 and N2 are the same as in
the SDE (1.5), and y is a non-negative real number, which will be chosen later.

Moreover, for the sake of readability we introduce the following notations:

• For x > 0,
τ+(x) := inf{t ≥ 0, Yt ≥ x} and τ−(x) := inf{t ≥ 0, Yt ≤ x}. (3.2)

• For x > 0,
τ+(x) := inf{t ≥ 0, Y t ≥ x} and τ−(x) := inf{t ≥ 0, Y t ≤ x}.

•
τ+(∞) = lim

x→∞
τ+(x) and τ+(∞) = lim

x→∞
τ+(x). (3.3)

Before giving the main proofs, we will derive a lemma, which will be useful on several occasions.
It concerns the probability for the processes Y and Y to reach infinity in a finite time.

Lemma 3.1.

(i) If Condition (SN∞) holds, then

Px

(
τ+(∞) < ∞

)
= Px

(
τ+(∞) < ∞

)
= 0 for all x > 0.

(ii) If Condition (LN∞) holds then Px
(
τ+(∞) < ∞

)
> 0 and Px

(
τ+(∞) < ∞

)
> 0 for all

large enough x > 0.
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Proof. Let us recall the definition of A in (2.2) and introduce the set of functions G
(t)
a given for

a ∈ A ∪ (0, 1), t ≥ 0 and x0 ≥ 0, x > 0 by

G(t)
a (x0, x) := (a − 1)

(
g(x)

x
− a

σ2(x)
x2 − 2b

1 − E[Θ1−a]
1 − a

− p(x)Ia(x)

+ λ(x)E
[

(1 + I/x)1−a − 1
1 − a

])
− r(Ex0 [Yt])E

[(
1 + P

x

)1−a

− 1
]

, (3.4)

where Ia has been defined in (2.3). For all h > c > 0, let T = τ−(c) ∧ τ+(h). Then, for all
a ∈ A ∪ (0, 1), the process

Z
(a)
t∧T := (Yt∧T )1−a exp

(∫ t∧T

0
G(s)

a (x0, Ys) ds

)
(3.5)

is a Ft-martingale. The proof of this property is the same as the proof of [19, Lemma 5.1] or [21,
Lemma 7.1].

Now we see that Condition (LN∞) is equivalent to the existence of a ∈ A and η > 0 such
that for all t ≥ 0

G(t)
a (x0, x) ≥ ln x (ln(ln x))1+η , (x → +∞),

and that Condition (SN∞) is equivalent to the existence of a < 1 and a non-negative function
f on R+ such that for all t ≥ 0,

G(t)
a (x0, x) ≥ f(x) + o(ln x), (x → +∞).

Indeed, the second to last term in (3.4) has no influence as r is a bounded function: this term
is thus bounded on R+.

Introducing similarly the set of functions Ga, for a ∈ A ∪ (0, 1), x0 ≤ y and x > 0 via

Ga(x) := (a − 1)
(

g(x)
x

− a
σ2(x)

x2 − 2b
1−E[Θ1−a]

1 − a
− p(x)Ia(x) + λ(x)E

[
(1 + I/x)1−a −1

1 − a

])

− r(y)E
[(

1 + P
x

)1−a

− 1
]
,

we obtain that for all a ∈ A ∪ (0, 1), the process

Z
(a)
t∧T :=

(
Y t∧T

)1−a
exp

(∫ t∧T

0
Ga (Ys) ds

)

is a Ft-martingale, and we have the same equivalences with Ga( · ) in place of G
(t)
a (x0, ·).

The proof of Lemma 3.1 is therefore a direct application of points i) and ii) of [21, Theo-
rem 4.1]. □

The proof strategies are similar for the three main results of this paper. We first derive a
property on the auxiliary process and then show how we can infer the long time behaviour of
the infection at the cell population scale.

3.2. Proof of Proposition 2.1

We derive an auxiliary Lemma before proving the proposition. Recall the definition of ρ in (2.1).

Lemma 3.2. If there exists x such that for x ≥ x, g(x) + E[I]λ(x) ≤ g̃x with g̃ < b, then there
exist y ≥ x and M, ε > 0 such that for every x ≥ y,

ρ(x) ≤ −M − (b − g̃)ε,
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and
E[Yt] ≤ y, for all t ≥ 0.

Proof. We first make the simplifying assumption that

g(x) + E[I]λ(x) = g̃x, x ≥ x.

In particular, for x ≥ x

ρ(x) = (g̃ − b)x + E[P]r(x), (3.6)
which goes to −∞ when x goes to infinity, as g̃ < b. This implies the existence of y ≥ x and
ε > 0 such that for any x ≥ y,

ρ(x) ≤ −M − (b − g̃)ε, (3.7)
where

M := sup
x≤x

{g(x) + E[I]λ(x)} .

We choose such a real number y in the definition of Y in (3.1).
The proof of Lemma 3.2 will stem from the following two properties:

(a) for every t ≥ 0, E[Y t] ≤ y,

(b) for every t ≥ 0, Yt ≤ Y t a.s.

Recall (3.1). Applying Itô formula with jumps (see for instance [16] Th 5.1 p. 66) and us-
ing (3.6), we get

e(b−g̃)tY t =
∫ t

0
e(b−g̃)s

√
2σ2(Y s)dBs +

∫ t

0

∫ p(Y s−)

0

∫
R+

e(b−g̃)szQ̃(ds, dx, dz)

+
∫ t

0

∫ 2b

0

∫ 1

0
e(b−g̃)s(θ − 1)Y s−Ñ(ds, dx, dθ)

+
∫ t

0
e(b−g̃)s(g(Y s) + E[I]λ(Y s) − g̃Y s)1{Y s≤x}ds

+
∫ t

0

∫ r(y)

0

∫
R+

e(b−g̃)spN1(ds, dx, dp) +
∫ t

0

∫ λ(Y s−)

0

∫
R+

e(b−g̃)siÑ2(ds, dx, di)

= M
(loc)
t +

∫ t

0

∫ r(y)

0

∫
R+

e(b−g̃)spN1(ds, dx, dp)

+
∫ t

0
e(b−g̃)s(g(Y s) + E[I]λ(Y s) − g̃Y s)1{Y s≤x}ds,

where Ñ and Ñ2 are the compensated measures of N and N2, and (M (loc)
t∧τ+(x), t ≥ 0) is a mar-

tingale for any x > 0. Indeed this is a local martingale and we can check using [28, Theorem 51
p. 38] as in the proof of Lemma 5.1 in [19] that it is a martingale. Taking the expectation and
using (3.7) and that b > g̃ yield

E[e(b−g̃)(t∧τ+(x))Y t∧τ+(x)] ≤ (r(y)E[P] + M)E
[

e(b−g̃)(t∧τ+(x))

b − g̃

]
. (3.8)

As g(x) + E[I]λ(x) = g̃x for large x, condition (SN∞) is satisfied and thus according to
Lemma 3.1,

lim
x→∞

τ+(x) = ∞.
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As a consequence, letting x go to infinity in (3.8), we obtain by Fatou’s Lemma:

e(b−g̃)tE[Y t] = E
[
lim inf
x→∞

e(b−g̃)(t∧τ+(x))Y t∧τ+(x)
]

≤ lim inf
x→∞

E
[
e(b−g̃)(t∧τ+(x))Y t∧τ+(x)

]
≤ (r(y)E[P] + M) e(b−g̃)t

b − g̃
,

and thus
E[Y t] ≤ r(y)E[P] + M

b − g̃
≤ y − ε.

This concludes the proof of step (a).
Let us now move on to step (b). By unicity of the solutions to (1.5) and (3.1) and as the rate

of positive jumps p is non decreasing with the process value, we have that for t ≥ 0:
Yt ≤ Y t a.s. if E[Ys] ≤ y ∀ s ≤ t.

We will show that this last inequality is satisfied for every s ≥ 0.
Notice first that with computations similar to the ones to get (3.8), we obtain:

E[e(b−g̃)(t∧τ+(x))Yt∧τ+(x)] = E[P]
∫ t

0
E
[
1s≤τ+(x)e

(b−g̃)sr(E[Ys])
]

ds

+
∫ t

0
E
[
1s≤τ+(x)e

(b−g̃)s(g(Ys) + E[I]λ(Ys) − g̃Ys)1Ys≤x

]
ds. (3.9)

Hence for a given x, E[e(b−g̃)(t∧τ+(x))Yt∧τ+(x)] evolves continuously with t. This justifies the
existence of µ(x) and υ(x) defined as follows: assume that there exist (x, t) ∈ R2

+ such that

E
[
e(b−g̃)(t∧τ+(x))Y t∧τ+(x)

]
e−(b−g̃)t = y + ε,

and choose the smallest t realising this equality:

µ(x) := inf
{

t ≥ 0,E
[
e(b−g̃)(t∧τ+(x))Y t∧τ+(x)

]
e−(b−g̃)t = y + ε

}
(if µ(x) = ∞, we may jump directly to Equation (3.10)). Now, define υ(x) ≥ µ(x) as follows:

υ(x) := inf
{

t ≥ µ(x),E
[
e(b−g̃)(t∧τ+(x))Y t∧τ+(x)

]
e−(b−g̃)t /∈ [y, y + 2ε]

}
,

where ε > 0.
Notice that (3.9) may be rewritten, for µ(x) ≤ t ≤ υ(x),

E[e(b−g̃)(t∧τ+(x)Yt∧τ+(x)] − E[e(b−g̃)(µ(x)∧τ+(x))Yσ∧τ+(x)]

=
∫ t

µ(x)
E
[
1s≤τ+(x)e

(b−g̃)s
(
E[P]r(E[e(b−g̃)(s∧τ+(x))Ys∧τ+(x)]e−(b−g̃)s)

+ (g(Ys) + E[I]λ(Ys) − g̃Ys)1Ys≤x

)]
ds

=
∫ t

µ(x)
E
[
1s≤τ+(x)e

(b−g̃)(t∧τ+(x))s
(
ρ(E[e(b−g̃)(s∧τ+(x))Ys∧τ+(x)]e−(b−g̃)s)

+ (b − g̃)E[e(b−g̃)(s∧τ+(x))Ys∧τ+(x)]e−(b−g̃)s + (g(Ys) + E[I]λ(Ys) − g̃Ys)1Ys≤x

)]
ds.

Using (3.7) and the fact that y ≥ x, we obtain:

E[e(b−g̃)(t∧τ+(x))Yt∧τ+(x)] ≤ E[e(b−g̃)(µ(x)∧τ+(x))Yσ∧τ+(x)]

+ (b − g̃)(t ∧ τ+(x))
∫ t

µ(x)
E
[
1s≤τ+(x)E[e(b−g̃)(s∧τ+(x))Ys∧τ+(x)]

]
ds.
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Applying Grönwall’s Lemma then yields

E[e(b−g̃)(t∧τ+(x))Yt∧τ+(x)] ≤ E[e(b−g̃)(µ(x)∧τ+(x))Yµ(x)∧τ+(x)]e(b−g̃)(t−µ(x)),

or equivalently

E[e(b−g̃)(t∧τ+(x))Yt∧τ+(x)]e−(b−g̃)t ≤ E[e(b−g̃)(µ(x)∧τ+(x))Yµ(x)∧τ+(x)]e−(b−g̃)µ(x) = y + ε.

This implies that for any (t, x) ∈ R2
+,

E[e(b−g̃)(t∧τ+(x))Yt∧τ+(x)]e−(b−g̃)t ≤ y + ε, (3.10)

and thus for any t ≥ 0, by Fatou’s Lemma, as Condition (SN∞) is satisfied

E[Yt] = E[e(b−g̃)tYt]e−(b−g)t = E[lim inf
x→∞

e(b−g̃)(t∧τ+(x))Yt∧τ+(x)]e−(b−g)t

≤ lim inf
x→∞

E[e(b−g̃)(t∧τ+(x))Yt∧τ+(x)]e−(b−g̃)t ≤ y + ε.

This concludes step (b) in the case g(x) + E[I]λ(x) = g̃x for x ≥ x. Now, as p and r are non
decreasing, if we choose the same Poisson Point processes N , Q, N1 and N2, and Brownian
motion B we may couple two solutions Y (1) and Y (2) of the SDE (1.5) with respective growth
rate functions for the parasites g1 and g2 satisfying

g1(x) ≤ g2(x) for all x ≥ 0

and respective reservoir infection rates λ1 and λ2 satisfying

λ1(x) ≤ λ2(x) for all x ≥ 0

such that
Y

(1)
t ≤ Y

(2)
t a.s. ∀ t ≥ 0

as soon as Y
(1)

0 = Y
(2)

0 . The choices g1(x) = g(x), λ1(x) = λ(x) and g2 and λ2 continuous
satisfying

g2(x) + E[I]λ2(x)
{

≥ g(x) + E[I]λ(x) for x ≤ x

= g̃x for x ≥ x,

allow us to extend the proof of step (b) to the assumptions of Lemma 3.2. □

Proof of Proposition 2.1. Let us begin with point (1). Recall that from Lemma 3.2 E[Yt] ≤ y for
every t ≥ 0. In particular, from Markov’s inequality we have for every K > 0,

P(Yt ≥ K) ≤ E[Yt]
K

≤ y

K
.

And from the Many-to-One formula (1.4) applied to the bounded function x 7→ 1{x≥K}, we
deduce

e−(b−d)tE

1{Nt≥1}
∑
u∈Vt

1{Xu
t ≥K}

 ≤ y

K
. (3.11)

According to Equations (7)–(8) in [13], if we denote by αt and βt the following variables,

αt := de(b−d)t − d

be(b−d)t − d
and βt := be(b−d)t − b

be(b−d)t − d
,

we have for t ≥ 0,

P(Nt = 0) = αt and for n ≥ 1, P(Nt = n) = (1 − αt)(1 − βt)βn−1
t .
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We thus obtain, for t ≥ 0 and K ∈ N,

P
(

Nte
−(b−d)t ≤ 1√

K
, Nt ≥ 1

)
=

⌊e(b−d)t/
√

K⌋∑
i=1

P(Nt = i)

= (1 − αt)
(

1 − β
⌊e(b−d)t/

√
K⌋

t

)
=
(

1 − d

b
+ O(e−(b−d)t)

)(
b − d

b
√

K
+ O

(
e−(b−d)t

√
K

))

= 1√
K

(
b − d

b

)2
+ O

(
e−(b−d)t

√
K

)
.

We thus get, using (3.11),

E
[
1{Nt≥1}

∑
u∈Vt

1{Xu
t ≥K}

Nt

]
= E

[∑
u∈Vt

1{Xu
t ≥K}

e(b−d)t
1{Nt≥1}

Nte−(b−d)t

]

≤ P
(

Nte
−(b−d)t ≤ 1√

K
, Nt ≥ 1

)
+ y

K

√
K

= 1√
K

((
b − d

b

)2
+ y

)
+ O

(
e−(b−d)t

√
K

)
,

which ends the proof of point (1).
Let us now prove point (2). First, from the Many-to-One formula (1.4), we know that for

t, K ≥ 0,

E

1{Nt≥1}

∑
u∈Vt

1{sups≤t X
(u)
s ≤K}

e(b−d)t

 = P
(

sup
s≤t

Ys ≤ K

)
. (3.12)

We will thus prove that the right hand term goes to 0 as t goes to infinity. Again we make
simplifying assumptions and will obtain the general case by coupling. We thus assume that
g(x) + E[I]λ(x) = g̃x with g̃ > b. In this case, from similar computations to the ones to
get (3.8), we derive the following series of inequalities for 0 ≤ y ≤ x,

Ey[e(b−g̃)(t∧τ+(x))Yt∧τ+(x)] = y + E[P]
∫ t

0
Ey

[
1s≤τ+(x)e

(b−g̃)sr(Ey[Ys])
]

ds ≥ y. (3.13)

As g(x) + E[I]λ(x) = g̃x, condition (SN∞) is satisfied and thus according to Lemma 3.1,
lim sup

x→∞
τ+(x) = ∞, Py-a.s.

We will now prove that (3.13) implies that for all x ≥ 0,
Py(τ+(x) = ∞) < 1. (3.14)

To this aim we will make a reductio ad absurdum by assuming that there exists x ≥ 0 such
that

Py(τ+(x) = ∞) = 1.

Notice that x may be chosen larger than y without loss of generality. We thus have, for any
t ≥ 0,

Yt∧τ+(x) ≤ x and e(b−g̃)(t∧τ+(x)) = e(b−g̃)t, a.s.

Hence, taking x = x in (3.13) we obtain that for any t ≥ 0,

xe(b−g̃)t ≥ y.

But by assumption, the left hand term goes to 0 when t goes to infinity, which leads to a
contradiction. We thus conclude that (3.14) holds.
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As a consequence, for every x ≥ 0, there exist αx > 0 and tx < ∞ such that

P(τ+(x) ≤ tx) ≥ αx.

Notice that as the functions p and r are non-decreasing, the solution of (1.5) is non decreasing
with the initial condition. In particular, for any y ≥ 0,

P(τ+(x) > tx) = P0(τ+(x) > tx) ≥ Py(τ+(x) > tx).

Thus for any n ∈ N∗,

P(τ+(x) > ntx) = P
(
τ+(x) > (n − 1)tx

)
P
(
τ+(x) > ntx|τ+(x) > (n − 1)tx

)
≤ P

(
τ+(x) > (n − 1)tx

)
sup
y≥0

Py

(
τ+(x) > tx

)
= P

(
τ+(x) > (n − 1)tx

)
P0
(
τ+(x) > tx

)
≤ P

(
τ+(x) > (n − 1)tx

)
(1 − αx).

By recurrence,
P(τ+(x) > ntx) ≤ (1 − αx)n ,

and taking the limit when n goes to infinity, we obtain that

P(τ+(x) < ∞) = 1 − P(τ+(x) = ∞) = 1.

In particular, for any K, ε > 0, there exists tK < ∞ such that for every t ≥ tK

P
(

sup
s≤t

Ys ≤ K

)
≤ P

(
sup
s≤tK

Ys ≤ K

)
= P

(
τ+(K) ≥ tK

)
≤ ε. (3.15)

We thus deduce, from (3.12) and (3.15), that∑
u∈Vt

1{sups≤t X
(u)
s ≤K}

e(b−d)t −−−→
t→∞

0 in probability.

Moreover, the fact that (Nt, t ≥ 0) is a birth and death process with individual death rate d

and individual birth rate b also entails that Nte
−(b−d)t converges in probability to an exponential

random variable with parameter b − d on the event of survival, when t goes to infinity (see [13,
Equation (15)] for instance). Hence, we have

1{Nt≥1}

∑
u∈Vt

1{sups≤t X
(u)
s ≤K}

Nt
=

∑
u∈Vt

1{sups≤t X
(u)
s ≤K}

e(b−d)t ×
1{Nt≥1}

Nte−(b−d)t −−−→
t→∞

0 in probability.

To end the proof of point (2) we use again the fact that we may couple a solution Y (1) of (1.5)
with g1(x) + E[I]λ1(x) = g̃x with a solution Y (2) with g2(x) + E[I]λ2(x) ≥ g̃x with the same
initial condition in such a way that

Y
(1)

t ≤ Y
(2)

t ∀ t ≥ 0 a.s.

Let us end with the proof of point (3). The proof strategy is the following: we will introduce
two processes Ỹ and

≈
Y ) such that for an equal initial condition of the processes (Y, Ỹ ,

≈
Y ), there

exists a coupling such that

Ỹ t ≤
≈
Y t ≤ Yt, a.s. ∀ t ≥ 0.

We will furthermore show the existence of C(µ0), α > 0, x1, T1, µ0 < ∞ such that (3.17)
and (3.19) hold. We will then deduce the needed result.
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The process Ỹ defined as the unique strong solution to the following SDE

Ỹ t =
∫ t

0
g(Ỹ s)ds +

∫ t

0

√
2σ2(Ỹ s)dBs +

∫ t

0

∫ p(Ỹ s−)

0

∫
R+

zQ̃(ds, dx, dz)

+
∫ t

0

∫ 2b

0

∫
R+

(θ − 1)Ỹ s−N(ds, dx, dθ), (3.16)

where the Brownian B and the Poisson random measures N and Q are the same as in the
SDE (1.5) solved by the process (Yt, t ≥ 0). Following the same proof as the one of Lemma 3.1
(it is enough to take r ≡ 0), we may check that Lemma 3.1 also holds for the process Ỹ .
Moreover, a close look at the proof of [19, Theorem 2.8] shows that the probability for Ỹ to
reach infinity in a given time is uniformly lower bounded for an initial condition large enough
in the following sense:

∃ α > 0, x1, T1 < ∞, inf
x≥x1

Px(τ̃+(∞) < T1) ≥ α, (3.17)

where τ̃+(∞) is defined as τ+(∞) in (3.3) with the process Ỹ instead of Y . To be more precise,
it is due to the fact that if we introduce the function

t(x) :=
(
ln(ln(x(1−δ)))

)−1−η
,

where δ ≤ (3 − 2a)−1, and the stopping times

τ̃0 = 0 and τ̃n+1 := τ̃+
((

Ỹ τ̃n ∨ 1
)1+δ

)
+ τ̃n for n ∈ N,

then under Pε−1 , if τ̃n < ∞ for all n ≥ 1,
∞∑

n=1
t(Ỹ τ̃n) ≤ (n ln(1 + δ))−(1+δ) =: B < ∞,

and for small enough ε,

Pε−1

(
τ̃+(∞) < B

)
≥

∞∏
n=1

(
1 − ε(a−1)δ(1+δ)n

)
> 0.

As the last quantity is decreasing with ε, we get (3.17).
Let us now introduce the process

≈
Y defined as the unique strong solution to the following SDE

≈
Y t =

∫ t

0
g(

≈
Y s)ds +

∫ t

0

√
2σ2(

≈
Y s)dBs +

∫ t

0

∫ p(
≈
Y s−)

0

∫
R+

zQ̃(ds, dx, dz)

+
∫ t

0

∫ 2b

0

∫ 1

0
(θ − 1)

≈
Y s−N(ds, dx, dθ) +

∫ t

0

∫ λ

0

∫
R+

iN2(ds, dx, di), (3.18)

where λ := minx≤3x1 λ(x), the Brownian B and the Poisson random measures N , Q and N2 are
the same as in the SDE (1.5) solved by the process (Yt, t ≥ 0). Now denote:

A(t) :=
∫ t

0

√
2σ2(

≈
Y s)dBs +

∫ t

0

∫ p(
≈
Y s−)

0

∫
R+

zQ̃(ds, dx, dz) +
∫ t

0

∫ 2b

0

∫ 1

0
(θ − 1)

≈
Y s−N(ds, dx, dθ)

and

B(t) :=
∫ t

0

∫ λ

0

∫
R+

iN2(ds, dx, di).
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If we take µ > 0, introduce ≈
τ

+ as τ+ with
≈
Y in place of Y (recall Equation (3.2)), and make

similar computations to the ones to prove [19, Lemma 5.1], followed by the Markov inequality,
we get

P0

(
sup
t≤µ

|A(t ∧ ≈
τ

+(3x1))| >
x1
2

)
≤ C1µ

(
sup

x≤3x1
σ(x) + sup

x≤3x1
p(x) + 1

)
,

where C1 is a finite constant. Moreover, as B(t) is a compound Poisson process, with rate
0 < λ := minx≤3x1 λ(x) < ∞, there exists a positive constant C2 depending on µ such that

P0

(3
2x1 ≤ B(µ) ≤ 2x1

)
≥ C2(µ).

If such a constant does not exist for a given x1 because the probability I has his support on
(3/2x1, ∞) for instance, we can choose a larger x1 and all the properties derived until now still
hold true.

As a consequence, for x1 large enough, we have the following series of inequalities:

P0(≈
τ

+(x1) ≤ µ) ≥ P0

(
3
2x1 ≤ B(µ ∧ ≈

τ
+(3x1)) ≤ 2x1, sup

t≤µ
|A(t ∧ ≈

τ
+(3x1))| ≤ x1

2

)

= P0

(
3
2x1 ≤ B(µ) ≤ 2x1, sup

t≤µ
|A(t ∧ ≈

τ
+(3x1))| ≤ x1

2

)

= P0

(
3
2x1 ≤ B(µ) ≤ 2x1

∣∣∣ sup
t≤µ

|A(t ∧ ≈
τ

+(3x1))| ≤ x1
2

)
P0

(
sup
t≤µ

|A(t ∧ τ̃+(3x1))| ≤ x1
2

)

= P0

(3
2x1 ≤ B(µ) ≤ 2x1

)
P0

(
sup
t≤µ

|A(t ∧ ≈
τ

+(3x1))| ≤ x1
2

)

≥ C2(µ)
(

1 − C1µ

(
sup

x≤3x1
σ(x) + sup

x≤3x1
p(x) + 1

))
.

The first equality stems from the fact that on the event{3
2x1 ≤ B(µ ∧ ≈

τ
+(3x1)) ≤ 2x1

}⋂{
sup
t≤µ

|A(t ∧ ≈
τ

+(3x1))| ≤ x1
2

}
,

µ is smaller than ≈
τ

+(3x1) and the last equality is a consequence of the independence of N , Q,
N2 and B. We thus conclude that there exist µ0 < ∞ and C(µ0) > 0 such that

P0(≈
τ

+(x1) ≤ µ0) > C(µ0). (3.19)
Now, let us introduce the process Y (+,x0) as follows:

• Y
(+,x)

0 = x0

• Y (+,x)
. follows the SDE (3.18) on [0,

≈
τ

+(3x1)]

• Y (+,x)
. follows the SDE (3.16) on [≈τ +(3x1), ∞).

As Ỹ and
≈
Y are non-decreasing with respect to their initial condition, by taking the same Poisson

Point processes N , N1, N2 and Q and the same Brownian motion B, when Y0 = x0, we can
couple the processes Y and Y (+,x0) to get

Yt ≥ Y
(+,x0)

t a.s. for any t ≥ 0.

Adding (3.17) we deduce that

inf
x0≥0

Px0(Yt = ∞ for t ≥ µ0 + T1) ≥ inf
x0≥0

P(Y (+,x0)
t = ∞ for t ≥ µ0 + T1) ≥ C(µ0)α.
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Applying a renewal argument as in the proof of point (2), we get that for any n ≥ 1,

sup
x0≥0

Px0(τ+(∞) ≥ n(µ0 + T1)) ≤ (1 − C(µ0)α)n,

and thus taking the limit when n goes to infinity, we finally obtain

inf
x0≥0

Px0(τ+(∞) < ∞) = 1.

The end of the proof of point (3) to get a convergence in probability, via the Many-to-One
formula, is the same as the end of the proof of point (2), and thus leads to

lim
t→∞

1{Nt≥1}

∑
u∈Vt

1{sups≤t X
(u)
s <∞}

Nt
= 0, in probability.

We now need to prove that the convergence is even almost sure. It is done exactly as in the proof
of Proposition 4.1 iii) in [23] (this proof being a slight generalisation of the proof of Theorem 4.2 i)
in [9]), and we refer the reader to these two papers. □

3.3. Proof of Proposition 2.2

Let us begin with point (1). First notice that (2.5) implies that for any x ≥ 0,

g(x) ∨ E[P]r(x) ≤ bx.

Now from Itô formula with jumps as well as from (2.5), we have the following series of inequalities,
when Y0 = x0:

Ex0 [eb(t∧τ+(x))Yt∧τ+(x)]

= x0 +
∫ t

0
ebsEx0 [1s≤τ+(x)g(Ys)]ds + E[P]

∫ t

0
ebsEx0 [1s≤τ+(x)r(Ex0 [Ys])]ds

≤ x0 + b

∫ t

0
ebsEx0 [1s≤τ+(x)Ys]ds + b

∫ t

0
ebsPx0(s ≤ τ+(x))Ex0 [Ys]ds

≤ x0 + 2b

∫ t

0
ebsEx0 [Ys]ds. (3.20)

From (2.5), we have that Condition (SN∞) is satisfied, and thus limx→∞ τ+(x) = ∞ a.s. Hence
from Fatou’s Lemma we get that

ebtEx0 [Yt] ≤ x0 + 2b

∫ t

0
ebsEx0 [Ys]ds,

and we conclude by Grönwall’s Lemma that

ebtEx0 [Yt] ≤ x0e2bt < ∞.

Applying inequality (2.5) in the first line of (3.20) as well as Fatou’s Lemma we obtain

ebtEx0 [Yt] ≤ x0 + lim inf
x→∞

(
b

∫ t

0
ebsPx0(s ≤ τ+(x))Ex0 [Ys]ds

−
∫ t

0
Px0(s ≤ τ+(x))(αEx0 [Ys] ∧ η)ebsds

+
∫ t

0
ebsEx0 [1s≤τ+(x)(g(Ys) − g(Ex0 [Ys]))]ds

)
.
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As for any s ≥ 0, 1s≤τ+(x) is smaller than one and non-decreasing with x, g(Ys) ≤ bYs and
Ex0 [Ys] < ∞ we get by the Monotone Convergence Theorem,

ebtEx0 [Yt] ≤ x0 + b

∫ t

0
ebsEx0 [Ys]ds −

∫ t

0
(αEx0 [Ys] ∧ η)ebsds +

∫ t

0
ebsEx0 [g(Ys) − g(Ex0 [Ys])]ds.

As g is concave, Jensen inequality entails

ebtEx0 [Yt] ≤ x0 + b

∫ t

0
ebsEx0 [Ys]ds −

∫ t

0
(αEx0 [Ys] ∧ η)ebsds. (3.21)

Let us introduce:
T1 := inf

{
t ≥ 0,E[Yt] <

η

α

}
and

T2 := inf
{

t ≥ T1,E[Yt] ≥ η

α

}
(if T1 = 0 we can choose η < αx0, which will make T1 > 0 and not modify the later compu-
tations). We will prove that T1 < ∞ = T2. To this aim, let us do a reductio ad absurdum by
assuming that T1 = ∞. In this case, (3.21) writes for any t ≥ 0

ebtEx0 [Yt] ≤ x0 + b

∫ t

0
ebsEx0 [Ys]ds −

∫ t

0
ηebsds, (3.22)

and if we introduce the function

G(t) = e−bt
∫ t

0
ebsEx0 [Ys]ds,

we obtain

G′(t) = −be−bt
∫ t

0
ebsEx0 [Ys]ds + Ex0 [Yt]

≤ −be−bt
∫ t

0
ebsEx0 [Ys]ds + e−bt

(
x0 + b

∫ t

0
ebsEx0 [Ys]ds −

∫ t

0
ηebsds

)
= e−bt

(
x0 −

∫ t

0
ηebsds

)
=
(

x0 + η

b

)
e−bt − η

b
,

where we applied (3.22) to obtain the inequality. This implies that for every t ≥ 0,

G(t) ≤
(

x0 + η

b

) 1 − e−bt

b
− η

b
t

which is not possible as Yt is non-negative. There is thus a contradiction and we deduce that
T1 < ∞. Notice now that if T2 < ∞, then

ebT2Ex0 [YT2 ] ≤ ebT1Ex0 [YT1 ] + (b − α)
∫ T2

T1
ebsEx0 [Ys]ds,

which entails by an application of Grönwall’s Lemma

Ex0 [YT2 ] ≤ e−α(T2−T1)Ex0 [YT1 ] ≤ e−α(T2−T1) η

α
.

This contradicts the definition of T2, which proves that T2 = ∞. Notice that all the previous
calculations stay true if we take a smaller η. This thus proves the following property:

lim
t→∞

Ex0 [Yt] = 0.

The end of the proof of point (1) follows the scheme we already used: Markov inequality to show
that for any ε > 0,

lim
t→∞

Px0(Yt > ε) = 0,
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Many-to-One formula, and convergence of Nte
−(b−d)t on the survival event of the cell population.

Let us now prove point (2). The proof is very similar to the one of Proposition 2.1(3).
Equation (3.17) holds for Y . Hence we just have to prove that for any x1 < ∞ satisfying (3.17),
there exists T0 < ∞ such that

Px0(τ+(x1) < T0) > 0. (3.23)
Indeed in this case it will imply that

Px0(τ+(∞) ≤ T0 + T1) > 0,

and thus
r(Ex0 [Yt]) = r(∞) > 0, ∀ t ≥ T0 + T1.

Indeed, as (LN∞) implies (2.6) the expectation of Yt stays infinity after the time T0 + T1 (see
Proposition 2.3(1)). Once we have this property the end of the proof is the same.

Let us thus introduce
T := τ−(0) ∧ τ+(2x1).

Then following the proof of Lemma 5.1 in [19] and applying Markov Inequality we get for δ < ∞,

Px0

(
sup
t≤δ

∣∣∣∣∣
∫ t∧T

0

√
2σ2(Ys)dBs +

∫ t∧T

0

∫ p(Ys−)

0

∫
R+

zQ̃(ds, dx, dz)
∣∣∣∣∣ >

√
δ

)
≤ C(x1)

√
δ.

Moreover,

Px0

(∫ δ

0

∫ 2b

0

∫ 1

0
(θ − 1)Ỹ s−N(ds, dx, dθ) = 0

)
= e−2bδ.

Now if δ is small enough to satisfy r(x0 −
√

δ) > r(x0)/2 > 0 (such a δ exists as r is a continuous
function), then

P
(∫ δ

0

∫ r(x0)/2

0

∫
R+

pN1(ds, dx, dp) > 2x1

)
= C(x0, x1) > 0.

Combining these three computations as in the proof of Proposition 2.1(3) we get that (3.23)
holds true, which ends the proof.

3.4. Proof of Proposition 2.3

Recall the definition of G
(t)
a (x0, x) in (3.4) and that Z

(a)
t defined in (3.5) is a Ft-martingale, and

notice that under the assumptions of Proposition 2.3, as r( · ) ≡ 0, G
(t)
a (x0, x) does not depend

on (x0, t). We will thus drop these dependencies in the proof. For the sake of readability we
will use the following Conditions (3.24) and (3.25), equivalent to the Conditions (2.6) and (2.7),
respectively:

∃ a ∈ A and a non-negative function f, Ga(x) ≥ f(x) + o(ln x), (x → ∞), (3.24)
∃ 0 < a < 1, η > 0, Ga(x) ≥ ln x(ln ln x)1+η, (x → ∞). (3.25)

This can be seen by noticing that the expressions on the left hand side of (2.6) and (2.7) equal
Ga(x)
a − 1 + 2b

1 − E[Θ1−a]
1 − a

.

Here again we begin with the study of the auxiliary process Y . Recall the definition of τ−

in (3.2). Then we have the two following properties:

(a) If there exists a ∈ A and a non-negative function f such that (3.24) holds, then for any
b, d > 0,

lim
x→∞

Px(τ−(b) < d) = 0. (3.26)
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(b) If there exist 0 < a < 1, η > 0, such that (3.25) holds, then for δ small enough and b
large enough,

inf
x>1

Px(τ−(b) ≤ l(b, δ, η)) ≥ e−8b−δ(1−a)
, (3.27)

where l(b, δ, η) is a function of b, δ and η, finite for b large enough and δ small enough,
which will be defined in (3.28)

In words, (3.26) means that for any choice of b < ∞, the probability that the process reaches
a value smaller than b in finite time goes to 0 when the initial condition of the process goes to
infinity, and (3.27) means that for any initial condition of the process, this latter will reach a
value smaller than b in finite time with a probability going to 1 when b goes to infinity. The
proof of Proposition 2.3 will be a direct consequence of these two properties.

Let us begin by proving (3.26). The beginning of the proof follows ideas of the proof of [19,
Theorem 2.13] but needs to be adapted as our bound is sharper and the process under considera-
tion exhibits negative jumps unlike the processes considered in [19]. Let us take positive constants
d, α < (a − 1)/4d, and b such that Ga(x) ≥ −α ln x holds for x > b. For any 0 < ε < b−1,
Equation (5.17) of [19] holds. Then following the computations of [19] with −α ln x in place of
−(ln x)r with 0 < r < 1, we get for ε−2n ≤ x < ε−2n+1 :

Px

(
τ−(b) < τ+(ε−2n+1) ∧ d

)
≤ ba−1ε(a−1−2αd)2n ≤ ba−1ε(a−1)2n−1

,

where in the last inequality we used that α ≤ (a − 1)/4d. The end of the proof of (3.26) follows
the end of the proof of point (i) of [19, Theorem 2.13].

Let us now prove (3.27). Here again we essentially follow the proof of point (ii) of [19, The-
orem 2.13], but the process Y may experience negative jumps unlike the processes considered
in [19], we take sharper bounds, and we need to adapt the proof. We just list the modifications
to be made to cover our case. Instead of taking t(x) = (1 + δ)r(ln x)1−r (with 0 < r < 1, δ > 0),
we choose

t(x) :=
(
ln ln x1/(1+δ)

)−(1+η)
, ∀ x > 1,

where η is chosen as in (2.7). Let 0 < θ < 1. By taking θx instead of x in the computations at
the end of [19, p. 2552], we get in place of their inequality (5.18):

Pθx

(
τ−(x(1+δ)−1) > τ+(x(1+δ))

)
≤ 1{θx>x(1+δ)−1 }θ1−ax−δ(1−a)

≤ 1{θx>x(1+δ)−1 }x−δ(1−a),

as a < 1. The third and fourth inequalities of [19, p. 2552] are modified as follows:

θ1−ax1−a ≥ Eθx

[
Y 1−a

τ−(x(1+δ)−1 )
exp

(∫ τ−(x(1+δ)−1 )

0
Ga(Ys)ds

)
1{t(x)<τ−(x(1+δ)−1 )<τ+(x(1+δ))}

]

≥ x
1−a
1+δ E[Θ1−a]Eθx

[
exp

(∫ t(x)

0
ln Ys(ln ln Ys)1+ηds

)
1{t(x)<τ−(x(1+δ)−1 )<τ+(x(1+δ))}

]
,

as a negative jump may occur at time τ−(x(1+δ)−1), which leads to

Pθx(t(x) < τ−(x(1+δ)−1) < τ+(x(1+δ))) ≤ 1{θx>x(1+δ)−1 }x−(1+aδ)/(1+δ).

If δ is small enough and x large enough, we thus still obtain the inequality:

Px(τ−(x(1+δ)−1)) ≤ 21{θx>x(1+δ)−1 }x(δ−(1+aδ))/(1+δ) ≤ 2x−δ(1−a).

This proves that in the computations of the beginning of [19, p. 2553], we may replace the terms
of the form

Pb(1+δ)n ( · )
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by terms of the form
Pτ−(b(1+δ)n )( · )

without modifying the bounds. To end the proof, we still have to check that with our choice for
the function t,

∞∑
n=1

t(b(1+δ)n) < ∞,

which is true. More precisely we have
∞∑

n=1
t(b(1+δ)n) =

∞∑
n=1

((n − 1) ln(1 + δ) + ln ln b)−(1+η) =: l(b, δ, η). (3.28)

We may thus obtain the following inequality,

inf
x>1

Px(τ−(b) ≤ l(b, δ, η)) ≥ e−8b−δ(1−a)

which ends the proof of (3.27).
We may now prove Proposition 2.3. Let us begin with point (1). By the Many-to-One for-

mula (1.4), and the definition of τ−(b) we have

e−(b−d)tEx

∑
u∈Vt

1{Xu
t ≤b}

 = Px (Yt ≤ b) ≤ Px(τ−(b) ≤ t) → 0, (x → ∞),

where we used (3.26) to obtain the last limit. We conclude as before using the convergence of
Nte

−(b−d)t on the event of the cell population survival.
Let us now consider point (2). Let t, ε > 0, and δ such that (3.27) holds for b large enough.

By definition of l(b, δ, η) in (3.28),
lim
b→∞

l(b, δ, η) = 0.

We also have
lim
b→∞

e−8b−δ(1−a) = 1.

Hence there exists b0(t, δ, η, ε) such that if b ≥ b0(t, δ, η, ε),
inf
x>1

Px(τ−(b) ≤ t) ≥ 1 − ε.

Now, notice that (3.25) implies that Conditions of [19, Theorem 2.8(i)] (or its extension [21,
Theorem 4.1.i)]) are satisfied and thus for any x ≥ 0,

Ex[e−τ+(∞)] = 0, (3.29)
where we recall that

τ+(∞) := lim
y→∞

τ+(y).

As the process Y admits negative jumps, we have for any n ∈ N the inequality

E
[
EYτ−(b)

[e−τ+(bn)]
]

≤ Eb[e−τ+(bn)] +
∫ 1

0
Eθb[e−τ+(bn)]κ(dθ).

For any θ ∈ [0, 1], Eθb[e−τ+(bn)] is non-increasing with n, and according to (3.29)

Eθb[e−τ+(bn)] → 0, n → ∞.

By the Monotone Convergence Theorem, we thus deduce that

E
[
EYτ−(b)

[e−τ+(bn)]
]

→ 0, n → ∞.

Hence, for any ε, t > 0, b > 1, there exists n(b, t) ∈ N such that for any n ≥ n(b),

E
[
EYτ−(b)

[e−τ+(bn)]
]

≤ εe−t,
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which implies, by the Markov inequality,

E
[
PYτ−(b)

(τ+(bn) ≤ t)
]

= E
[
PYτ−(b)

(e−τ+(bn)) ≥ e−t
]

≤
E
[
EYτ−(b)

[e−τ+(bn)]
]

e−t
≤ ε.

To conclude, for any t, ε > 0 and δ small enough, if we choose b ≥ b0(t, δ, η, ε) and n ≥ n(b) we
obtain thanks to the strong Markov inequality, and if we recall that (Ft, t ≥ 0) is the canonical
filtration associated to Y , for any x > 1,

Px(Yt > bn) ≤ Px(τ−(b) > t) + Px(Yt > bn, τ−(b) ≤ t)

≤ Px(τ−(b) > t) + E
[
Px(Yt > bn, τ−(b) ≤ t|Fτ−(b))

]
≤ Px(τ−(b) > t) + E

[
PYτ−(b)

(τ+(bn) ≤ t)
]

≤ 2ε.

We conclude as before using the Many-to-One formula (1.4) and the convergence of Nte
−(b−d)t

on the event of the cell population survival.
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