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Abstract

For many years, voltage sensitive dye imaging (VSDI) has enabled the fruitful analysis of neuronal trans-
mission by monitoring the spreading of neuronal signals. Although useful, the display of diffusion of neuronal
depolarization provides insufficient information in the quest for a greater understanding of neuronal compu-
tation in brain function. Here, we propose the optimal mass transportation theory as a model to describe the
dynamics of neuronal activity. More precisely, we use the solution of an L2-Monge–Kantorovich problem to
model VSDI data, to extract the velocity and overall orientation of depolarization spreading in anatomically
defined brain areas. The main advantage of this approach over earlier models (e.g. optical flow) is that the
solution does not rely on intrinsic approximations or on additional arbitrary parameters, as shown from sim-
ple signal propagation examples. As proof of concept application of our model, we found that in the mouse
hippocampal CA1 network, increasing Schaffers collaterals stimulation intensity leads to an increased VSDI-
recorded depolarization associated with dramatic decreases in velocity and divergence of signal spreading. In
addition, the pharmacological activation of cannabinoid type 1 receptors (CB1) leads to slight but significant
decreases in neuronal depolarization and velocity of signal spreading in a region-specific manner within the
CA1, indicating the reliability of the approach to identify subtle changes in circuit activity. Overall, our
study introduces a novel approach for the analysis of optical imaging data, potentially highlighting new
region-specific features of neuronal networks dynamics.

1. Introduction

During recent decades, voltage sensitive dye imaging (VSDI) has fruitfully contributed in advanc-
ing our knowledge of neuronal circuits and single cells functioning in various brain regions, both
in vitro and in vivo [1, 15, 16, 27, 31, 34]. To optically image electrical activity, the preparation
under study is stained with a suitable dye, which binds the external surface of cell membranes
and acts as transducer transforming variations in membrane potential into changes in absorption
or emission of light [15, 27].

In the majority of cases, the analysis of VSDI data has so far been restricted to the quan-
tification of membrane potential-dependent variations of fluorescence inside a given region of
interest (ROI). Although useful and easy to implement, such analysis misses key information
of neuronal computation that in principle is readily obtainable from VSDI data: for instance,
(i) how do dynamics of neuronal activity change at time scales relevant for neuronal processes?
(ii) are there other parameters during spreading of VSDI signals that could provide additional
properties of neuronal circuits?

Several VSDI studies began to address these questions [2, 9, 26, 28, 30, 34] by developing
analytical methods for a deeper interpretation of circuits dynamics. These approaches, however,
mainly rely on the analysis of integral quantities [2, 9, 28, 34] and in some cases on ad hoc
approaches to determine how the VSDI signal is propagated through the neuronal tissue. For
example, Takagaki and collaborators recently employed a flow-detection algorithm [30] to study
the propagation of neuronal activity recorded using VSDI. This algorithm exploits a maximum
correlation principle, classical in continuum mechanics, to determine spatial flow patterns. For
simple propagation patterns, this approach can lead to reasonable results. When, however, the
signal spreads in complex threads, a statistical approach displays problems delivering valuable
information due to the lack of an underlying model.

Principal component analysis (PCA) is another method classically employed in the analysis
of distributed systems [20, 26]. The main feature of this approach is that it may deliver a small
dimensional representation of spatially distributed patterns. A substantial drawback is that the
notion of propagating signals is blurred by this empirical modal representation. Wave front
propagation of signals is a classical example of these issues: an infinite number of PCA compo-
nents would be needed to reasonably represent this simple phenomenon. Considering that signal
spreading in neuronal networks shares specific features of wave front propagation phenomena,
PCA approaches display apparent limited analytical benefit to describe their behavior.
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Here we propose a model-based non-statistical objective method for quantifying the dis-
tributed information obtained with VSDI, using as experimental model the layer-specific neu-
ronal network dynamics within the CA1 region of the hippocampus. The model originates from
the resolution of an optimal mass transportation problem [33] aimed at dissecting propagation
patterns from successive time-points of neuronal depolarization spreading. To our knowledge,
there is no a connection establishing between optimal transportation and the mathematical
models describing stimuli propagation in the neural tissue at the microscopic level. Optimal
transportation is considered as a phenomenological model.

Optimal transportation theory has been successfully applied to the analysis of disparate phe-
nomena such as, for example, crowd motion [25], geophysical flows [7], collapsing sand piles [13],
nonlinear electrodynamics [12], magnetic resonance imaging (MRI) data [18] and evolution of
the universe [14].

The fundamental question behind the optimal mass transportation problem is to determine
how to map one image onto the next in an optimal way. In this case, the mapping is optimal
in the sense of minimum displacement of elementary signal intensity. We use the Wasserstein
distance to measure the optimality and we consider the L2-Monge–Kantorovich problem for the
analysis.

The nature of the optimal transfer problem is inherently non-linear and may not be solved
using linear interpolation techniques. In the simple example of a travelling signal captured in
two consecutive images, the two images must be interpolated by an intermediate image to arrive
at the underlying transport phenomenon. Linear interpolation techniques are inadequate as they
result in an averaged combination of the initial and final signal with no travelling pattern. The
Wasserstein distance that is calculated by the optimal mass transportation problem rigorously
defines a measure of the difference between several snapshots of a propagation pattern. The
dynamic vector fields obtained with this approach determine velocity and overall direction (i.e.
divergence) of VSDI signal spreading in a specific region, and can be analyzed by conventional
point-wise statistical methods. In addition, taking into account the spatial nature of the time-
resolved data, we have the possibility to provide a deeper understanding of the distributed
neuronal activity.

Compared to other approaches to detect signal propagation patterns in VSDI, the advantage of
the optimal transportation formulation is that it is model-based and no additional parameters
are tuned to analyze the data. Furthermore, we show the ease of dissecting the activity and
distribution of neuronal signals amongst different sub-layers of a given brain region, which,
using classical electrophysiological techniques, is both invasive and time-consuming to achieve.

The outline of the present paper is as follows. In Section 2 we describe the materials and
methods used for VSDI experiments. In Section 3 we present the mathematical model based
on the optimal transportation theory that we used to analyse the VSDI data. In Section 4 we
describe the results obtained from the layer-specific analysis of neuronal dynamics using our
model in the CA1 region of the mouse hippocampus. We conclude the paper with a discussion
section.

2. Voltage Sensitive Dye Imaging: materials and methods

In this section, we details all the materials and methods used to extract VSDI data.

Slice preparation and staining with Voltage sensitive dye. Experiments were approved
by and carried out according to the local ethical committee of the University of Bordeaux (ap-
proval number 501350-A) and the French Ministry of Agriculture and Forestry (authorization
number 3306369). 8 to 11 weeks-old male C57BL/6-N mice (Janvier, France) were kept with
ad libitum access to food and water. After isoflurane anesthesia mice were decapitated and
350 µm thick sagittal slices containing dorsal hippocampus were prepared with a vibratome
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(VT1200S, Leica, Germany). During this procedure the brain was submerged in oxygenated
(95%O2/5%CO2) ice-cold sucrose-based cutting solution, containing (in millimolar): 180 su-
crose, 2.5 KCl, 26 NaHCO3, 1.25 NaH2PO4, 11 Glucose, 0.2 CaCl2, and 12 MgCl2. After prepa-
ration, slices were incubated for 30 minutes at 34 ◦C in oxygenated artificial cerebrospinal fluid
(ACSF), containing (in millimolar): 123 NaCl, 2.5 KCl, 26 NaHCO3, 1.25 NaH2PO4, 11 Glucose,
2.5 CaCl2, 1.3 MgCl2. Subsequently slices were allowed to recover, at room temperature in the
same solution, for at least 30 minutes before starting the dye staining procedure. For dye staining,
each slice was incubated for 15 minutes in oxygenated ACSF containing Di-4-ANEPPS (Sigma-
Aldrich, France) at a concentration of 16.4 µM (20 mM stock in DMSO, final DMSO < 0.1%).
The stained slice was allowed to recover in dye-free ACSF, at room temperature, for at least
45 minutes, before recording.

Optical recording method. Slices were placed in a submerged recording chamber (Mem-
brane Chamber, Scientific Systems Design Inc., Canada) under constant flow of oxygenated
ACSF (∼ 2 mL/min), at room temperature. To record neuronal signals with VSDI we used an
epifluorescence macroscope (Brainvision, Japan) equipped with the MiCAM02 optical imaging
system (MiCAM02 HR; Brainvision, Japan) with a spatial resolution of 33.3×37.5 µm (horizon-
tal and vertical, respectively) for each pixel. A stereoscopic microscope (Leica, Germany) was
used to visually guide the placement of a concentric bipolar stimulating electrode (FHC Inc.,
USA) into the proximal (with respect to the CA3) region of the stratum radiatum, to stimulate
the Schaffers collateral pathway. For each stimulus, a 200 µs long voltage pulse was applied using
an isolated stimulator (DS2A, Digitimer Ltd., United Kingdom). The stimulation intensity in
experiments with HU210 with respective control was set at 20 V. Every acquisition consisted of
256 frames sampled every 2.2 milliseconds averaged 15 times. Each experimental point was the
mean of four acquisitions interleaved of 20 seconds, averaged by using the utility of the imaging
analysis software (Brainvision, Japan).

VSDI data and ROI extractions. For each averaged data we calculated the fractional
change in fluorescence (∆F ∗F −1) using the Brainvision imaging analysis software (Brainvision,
Japan) as follows: the intensity of emitted fluorescence prior to stimulation in the first 8 frames
was averaged and used as reference intensity (F0). The change in fluorescence [∆F (t) = F (t)−F0]
was then normalized by the highest background fluorescence value, and absolute values repre-
senting changes respect to background fluorescence were used as the optical signal. From each
data file representing each experimental point we extracted 16 frames containing the signal of
interest, starting from one frame before stimulus, thus covering all the time-lapse of neuronal
depolarization. Exclusively for Figure 4.1(A) (see Section 4), after calculating ∆F ∗ F −1, we
applied a spatial filter of 5×5 pixels and then isolated the CA1 region by zeroing values of
fluorescence outside this region of interest (ROI). A depolarization produces a reduction in fluo-
rescence emitted by Di-4-ANEPPS, while a hyperpolarization an increase; for clarity, ∆F ∗ F −1

values representing depolarization (Figures 4.1(C) and 4.2) were considered positive. ROIs were
manually drawn post-hoc using the Brainvision image analysis-acquisition software (Brainvision,
Japan), representative ROIs are shown in Figure 4.1(B). Great care was taken to match the ROI
boundaries with anatomical landmarks, however, the low spatial resolution of our VSDI together
with the relatively large pixel size, make an exact subdivision of the CA1 region difficult. As a
consequence, the ROI named Radt. Distal (radiatum distal) may contain a limited component
of the stratum lacunosum-moleculare, and the ROI named Pyr. Layer (Pyramidal Layer) may
include very limited parts of stratum oriens and stratum radiatum. To extract the signal of in-
terest inside each ROI, over the 16 frames of neuronal activity, we used the Brainvision software
to zero ∆F ∗ F −1 values outside of ROI boundaries.
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Pharmacology. In experiments with HU210 (Tocris; United Kingdom), we compared separate
experiments where we applied either HU210 or the equivalent volume of DMSO (i.e. “Vehicle”
condition; DMSO < 0.1% v/v final concentration). Drugs were bath-applied for 30 minutes after
respective control conditions.

3. The mathematical model

The optimal transportation problem is increasingly used to model several problems in mechanics,
physics, image analysis and other fields, see e.g. [33] and references therein. Because of all these
applications, this old topic first introduced by Monge in 1781 has attracted considerable attention
these last years.

The model formulation is detailed as follows: let us consider two images of a spreading depo-
larization signal taken at ∆t one from the other. We consider non-negative signal values defined
by ρ0(ξ) for the initial frame and ρ1(x) for the successive one, where ξ and x are the coordinates
of the pixels within each frame. We model the signal spreading from one image to the other
by a phenomenological model requiring that the overall squared distance travelled, weighted by
signal intensity, is the smallest possible. Let X : Ω0 → Ω1 a smooth one-to-one map that takes
every point from the first image Ω0 to the next Ω1. The model is then defined introducing the
L2 squared Wasserstein distance to be minimized:

inf
X

∫
Ω0

ρ0(ξ)|X(ξ) − ξ|2 dξ. (3.1)

Let m0 and m1 the total intensity of the first and second frame, respectively. The minimization
in (3.1) is carried out under the constraint that X(ξ) realizes the transfer of ρ0/m0 onto ρ1/m1:

ecρ0(ξ) = det(∇X(ξ))ρ1(X(ξ)) (3.2)

where c = ln(m1/m0) and
1

m0

∫
Ω

ρ0 dx = 1
m1

∫
Ω

ρ1 dx. (3.3)

With respect to the classical optimal transportation problem, we consider here an unbalanced
transport to take into the difference of intensity between ρ0 and ρ1. From the biological point of
view this means that the firing neuron population is increasing proportionally to its size. Other
authors have considered extensions of the optimal transport problem that allow for variation of
mass [3, 11]. The phenomenological model that we propose, hence, relies on the choice of the
Wasserstein metric to define the cost of the mapping and on the model of signal growth implicit
in the Jacobian equation (3.2), which is an intensity balance equation. This problem is called
the exponential growth problem (EGP). The EGP can be reformulated introducing a temporal
dimension so that, given Π : [0, 1] × Ω0 → R2, with Π(0, ξ) = ξ, Π(1, ξ) = X(ξ), x = Π(t, ξ) and
∂tΠ = v(t, x), the EGP amounts to the solution of:

inf
ρ,v

∫ T

0

∫
R2

ρ(t, x)|v(t, x)|2/2 dx dt, (3.4)

where the minimum is taken among all densities ρ(t, x) ≥ 0 and velocity fields v(t, x) ∈ R2

satisfying the continuity equation:

∂tρ + ∇ · (ρv) = cρ (3.5)

with the initial and final conditions

ρ(0, · ) = ρ0, ρ(T, · ) = ρT . (3.6)
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As in [4] we compute the formal optimality conditions of the space-time minimization prob-
lem (3.4) satisfying (3.6) and (3.5):

v = ∇ϕ(t, x)

∂tϕ + 1
2 |∇ϕ|2 + cϕ = 0

where ϕ is the Lagrange multiplier of the constraint (3.6) and (3.5).
Finally, the constrained Euler–Lagrange equations are:

∂tρ + ∇ · (ρv) = cρ

∂tv + v · ∇v = −cv

ρ(0, x) = ρ0, ρ(1, x) = ρ1

(3.7)

and the problem consists in determining the initial velocity u(0, · ) = u0. The solution to this
problem exists and it is unique as shown in the following.

Let ρ̄1 = ρ1(X(ξ))/ec, then the minimization of (3.1) subject to:

ρ0(ξ) = det(∇X(ξ))ρ̄1 (3.8)

becomes the classical Monge–Kantorovich problem (MKP), which admits a unique solution [6,
32] and the minimizing mapping X∗(ξ) can be written as the gradient of some convex potential.

Let us then denote the solution of the MKP by ∇Ψ = X∗(ξ) − ξ. From equation (3.5) we
have that:

u(t, Π(ξ, t)) = u0(ξ)e−ct (3.9)
and hence

u0(ξ) = c∇Ψ/(1 − e−c),
so that u(1, Π(ξ, 1)) = c e−c∇Ψ/(1 − e−c).

The frames relative to the propagation of VSDI-recorded depolarization are such that c is
very close to 0 since m0 and m1 do not considerably differ. In this limit, the initial velocity
u0(ξ) ≈ ∇Ψ that is the solution of the equivalent MKP. Finally, this velocity is multiplied by
35.4 µm (the averaged pixel size for both x and y), divided by the actual experimental ∆t (2.2
milliseconds) and converted to meters per second, which is the final unit reported here.

As a result, given a time we can compute Wasserstein distance between two subsequent frames
and the initial velocity field of the mapping. In addition, as a mean of interpreting the results,
the rate of volume change due to the mapping is computed by integrating the divergence of the
velocity field: ∫

Ω
∇ · v(t, x) dx. (3.10)

In this paper, we use a robust and fast numerical scheme based on a Newton approach, proposed
in [5] to approximate the solution of the L2-Monge–Kantorovich problem. Another efficient
algorithm has recently been proposed in [19]. We consider in particular the following iterative
method that can readily be coded as it implies the solution of a rather simple elliptic PDE, see
Algorithm 1.

3.1. Validation of the algorithm based on the optimal transportation problem

In order to validate the reliability of the algorithm based on the optimal transportation problem,
we analyzed three different simulated datasets: (i) displacement by predetermined distances of a
simple Gaussian distribution and (ii) of a VSDI-recorded depolarization, and (iii) the mapping of
artificial data with a predefined velocity field. In these conditions, the algorithm should provide
vector fields representing Wasserstein distances that coherently reflect the displacements and
the mapping of the simulated signals.
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Algorithm 1 Iterative algorithm

1. n = 0;

2. intial mapping X0 = ∇Ψi;

3. ρn
0 (ξ) = ρ1(Xn(ξ)) det ∇ξXn(ξ);

4. compute Ψn by solving: ∇ · ( ρ1+ρ0
2 ∇Ψn) = ρn

0 − ρ0

5. Xn+1 = Xn − α ∇Ψn;

6. n = n + 1;

7. go to 3 if convergence is not attained;

In the first test (Figure 3.1(A)), we assessed how well the algorithm could describe the trans-
lation of a two-dimensional Gaussian in a Cartesian plane. Here a two dimensional Gaussian (ρ0)
with x, y coordinates 60, 30 was shifted to give ρ1 at x, y coordinates 25, 42. From a theoretical
point of view, the exact solution of the optimal mass transportation problem coincides with the
translation of ρ0 onto ρ1. Indeed, as shown in Figure 3.1(A), when we computed the Wasser-
stein distance between the two centers (vector, superimposed blue arrow) we found a value of
37 pixels, which coherently reflects the operated translation. To further test the accuracy of
the algorithm, we next analyzed the predetermined motion of a more complex shape, such as
a real VSDI-recorded depolarization within the whole CA1 hippocampal region. As shown in
Figure 3.1(B), shifting each value of fluorescence intensity (ρ0, left panel) by 1 pixel along the
y axis (x, y + 1 coordinates) leads to ρ1 (right panel) with a corresponding vector field (lower
panel) in which every vector far from the border is 1 pixel in length and points in the upward
direction, correctly reporting the displacement. We next present a mapping of a predetermined
radial initial velocity. We defined a velocity field a priori as the gradient of a given potential
(i.e. a solution of the optimal transportation problem, “defined velocity”), which corresponds to
a source of given intensity ρ0 (Figure 3.1(C), left panel). Using this field, we mapped ρ0 onto
ρ1 (not shown) and then, with our algorithm, used these two densities to compute the mapping
between the two (i.e. “solution velocity”, Figure 3.1(C), right panel) a posteriori. As shown in
Figure 3.1(C) (right panel), if we compare the known velocity field defined a priori with the one
obtained a posteriori, by optimal displacement, we can appreciate complete overlapping between
the two.

As a final validation of our method, below we numerically demonstrate how we obtain corre-
sponding values by calculating the integral of divergence for the velocity fields mentioned above.
Let us define a circle domain Ω of center (xc, yc), radius r, and a velocity field as follows:

v(x, y) = c̃

((x − xc)2 + (y − yc)2 + η)(x − xc, y − yc)T ,

where η is a real positive number that assures the regularity of v and its integrability over the
domain Ω. In this example, we consider η = 0.001, r = 5 and c̃ = 1. We can compute the integral
as (3.10): ∫

Ω
∇ · v(t, x) dx ≈ 2πc̃

r2

(η + r2)3/2 ≈ 1, 26.

By calculating the integral divergence of the vectorial field obtained a posteriori, we obtain the
same number: ∫

Ω
∇ · ∇Ψ(t, x) dx =

∫
Ω

∆Ψ(t, x) dx ≈ 1, 26.
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Altogether, these data demonstrate the reliability of our method in coherently reporting changes
in travelled distances, directions and divergence of vectorial fields resulting from the computation
of optimal transportation theory.

Figure 3.1. Validation of the algorithm with artificial data.
(A) A Gaussian representing a density function ρ0 with centre coordinates (60, 30)
pixels on x and y axis respectively has been shifted 35 pixels to the left and 12
pixels upward to obtain ρ1, with x, y coordinates 25, 42. Superimposed blue arrow
is the vector (37 pixels in length) reporting the displacement according to our
algorithm.
(B) Upper panel, a density function ρ0 representing VSDI-recorded depolarization
in the whole CA1 area has been shifted upward by 1 pixel to obtain ρ1 (heat
maps were constructed using a 7 colour lookup table, red denotes the highest
depolarization values). Lower panel, the velocity field reports the displacement
of each depolarization value in each pixel according to the algorithm. Note that
every pixel far from the border has a length of 1 pixel and points upward.
(C) The left panel shows a predefined velocity field (superimposed blue arrows)
and the associated density function ρ0 (heat maps constructed using a 7 colour
lookup table, red denotes the highest density values). The right panel shows the
velocity field obtained after calculation of optimal displacement (red arrows) of
ρ0 to ρ1 (not shown). Green dashed line represents a circle domain Ω of center
(xc, yc).

3.2. Relationship to optical flow

Other approaches can be proposed to compute distributed vector fields from successive images.
For instance, a well-known way to determine vector fields is the optical flow method, first in-
troduced by the psychologist James J. Gibson in the 1940s. As an example of this strategy
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for the analysis of VSDI data, Takagaki and collaborators used a flow-detection algorithm that
determines spatial flow between two detectors by searching for the time shift which gives the
optimal correlation coefficient between the signal from each detector, within a given correlation
window [30]. The initial problem formulation in optical flow estimation is based on a simple
constant brightness constraint:

ρ(x, t) = ρ(x + dx, t + dt),
where ρ is the intensity at the point x at the instant t, dx the displacement in space and dt the
time lag. Under the assumption of “small displacements” this constraint can be rewritten as:

ρt + v · ∇ρ = 0
where v = dx/dt is a velocity field. Coherent with this assumption, the time derivative in
this equation is approximated by the difference between the image intensities and the space
derivative, by finite differences on the average image. Yet, this equation is underdetermined since
there are two unknowns, which are the two components of the velocity field, v. Thus, to estimate
the flow, several approaches with additional constraints have been proposed. Among them, the
well-known Horn–Schunck method [17] combines density advection with a regularization on the
velocity fields, and is based on minimization of the following function:∫

D
(ρt + ∇ρ · v)2 + λ(∥∇u∥2 + ∥∇v∥2) dx

where D is the relevant image domain in R2 and λ is a regularization parameter (the larger
λ is, the smoother the flow). This method depends on: (i) the time lag between consecutive
images and (ii) the parameter λ that has to be calibrated. Alternative variations on the optical
flow calculation follow comparable concepts (e.g. the Lucas–Kanade method [22]) and they are
based on similar regularization terms requiring additional information to solve the problem. In
contrast to the Horn–Schunck optical flow method described above, the optimal transportation
theory is independent of the tuning of any parameters. More specifically, the velocity field from
the solution of the optimal transportation problem is explicitly obtained by direct integration
and the result is exact, whereas the Horn–Schunck method provides a velocity field that depends
on the parameter λ and the extent of the displacement.

To demonstrate this difference, we calculated the velocity of a rigid translation of a synthetic
Gaussian in one space dimension. We considered a Gaussian ρ0 that is translated by a given
∆x in space ρ1 over a reference time lag of 1. As shown in Figure 3.2(A) (middle panel),
by considering λ = 0.5 and ∆x = 0.5, the velocity field obtained with the Horn–Schunck
optical flow method is reasonably correct, returning a value v = 0.51, within tolerable error
of the ground truth v = 0.5 (constant in the area where the Gaussians are centered). Note
that with the optimal mass transportation algorithm, we obtain exactly v = 0.5 and there were
no parameters to tune. Next we plotted the velocity field for the same translation shown in
Figure 3.2(A) (left panel), but this time the velocity field was determined, using Horn–Schunck
method, with λ = 1 (Figure 3.2(A), right panel). In this scenario we obtained an incorrect
velocity of 0.36, thereby demonstrating how the parameter λ must be carefully selected based
on previous experience or calibration. In the final simulation (Figure 3.2(B)), we show that
for a relatively large spatial shift (∆x = 1.5) and for λ = 0.5, the numerical velocity obtained
with the Horn–Schunck method is variable in space and completely inconsistent compared to
the exact value of 1.5, demonstrating the inaccuracy of this method in modelling the optical
flow for large image displacements. Yet, solving the optimal transportation problem once again
yielded the exact velocity, 1.5. Altogether, these simple simulations show certain limitations
of currently used optical flow algorithms, revealing that: (i) the method is not accurate when
the displacement between two successive images is too large, and (ii) even in the case of small
displacements, λ needs tuning to obtain an accurate result. The choice of λ is a critical step
because if it is too small the algorithm does not converge, and too large the approximation is
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Figure 3.2. Comparison between the optimal mass transportation problem and
the Horn–Schunck optical flow method.
(A) Left panel, a Gaussian function ρ0 centered at x = 0 is shifted to x = 0.5(ρ1).
Middle panel, velocity field obtained with the Horn–Schunck optical flow method
from the translation of the Gaussian function in left panel with λ = 0.5. Right
panel, velocity field obtained with the Horn–Schunck optical flow method from
the translation of the Gaussian function in left panel with λ = 1.
(B) Left panel, a Gaussian function ρ0 centered at x = 0 is shifted to x = 1.5(ρ1).
Right panel, velocity field obtained with the Horn–Schunck optical flow method
from the translation of the Gaussian function in left panel with λ = 0.5

inaccurate. The main advantage of the optimal mass transportation model considered here is
that it is self-contained, requiring neither an intrinsic hypothesis on the time lag between two
images, nor arbitrary parameters to compute the velocity fields. Compared, however, to the
optical flow methods, the mass transportation model is computationally more demanding, yet
easily handleable by modern computers.

4. Results

The 16 frames containing the signal extracted from each ROI were used to calculate the optimal
displacement of neuronal depolarization between successive frames, according to the optimal
mass transfer problem. All the numerical simulations have been performed using a robust and fast
numerical scheme proposed in [5]. The script used for the estimation of the optimal displacement
was realized using Matlab (MathWorksš, R2016b).

Layer-specific characterization of VSDI-recorded depolarization dynamics in the
CA1 hippocampal network. Here, we quantified the dynamics of propagating depolariza-
tion signals, recorded by VSDI in specific sub-regions of the CA1 hippocampal network. As
shown in Figure 4.1(A), stimulation of Schaffers collaterals (20 V stimuli) induced elevation of
VSDI-recorded depolarization throughout the CA1 network. A layer-specific analysis of changes
in fluorescence intensity following stimulation (see Figure 4.1(B) for representative ROIs ar-
rangement) shows that most of the depolarization occurred in the pyramidal layer and in the
part of stratum radiatum proximal to it (Radt. Prox.), being lower in distal stratum radiatum
(Radt. Dist.) and minimal, but significantly greater than baseline, in stratum oriens (Figure 4.1C,
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left panel). This was the case when integrating over the whole recording period (0–32 ms) and
within defined time intervals covering early (0–10 ms), intermediary (12.2–20 ms), and late stages
(23.2–32 ms) of the response (Figure 4.1(C), right panel: 0–32 ms, F (3, 52) = 31.44, p < 0.0001;
0–10 ms, F (3, 52) = 28.78, p < 0.0001; 12.2–21 ms, F (3, 52) = 39.079, p < 0.0001; 23.2–32 ms,
F (3, 52) = 9.484, p < 0.0001; one-way ANOVA followed by Tukey post-hoc test; n = 14 slices
from 12 mice). Evaluating the propagation velocity of VSDI-recorded depolarization in the dif-
ferent CA1 sub-regions (Figure 4.1(D)), revealed no inter-strata differences. Indeed, in all CA1
sub-regions the propagation velocity reached a peak of ∼ 0.1 ms−1 at 5.6 ms post stimulation, and
reached a plateau of ∼ 0.03 ms−1 at approximately 10 ms (Figure 4.1(D)). Spreading of VSDI-
recorded depolarization along the CA1 layers during the first 10 milliseconds after stimulation
was associated with a progressive decline of the overall signal divergence within each sub-region
(Figure 4.1(E), left panel), which reached a steady level after 7.8 ms and lastly returned to a level
similar but lower to the initial phase after approximately 23.2 ms. This effect was particularly
less pronounced in stratum oriens, where divergence was significantly reduced throughout time
as compared to other layers (Figure 4.1(E), right panel: 0–32 ms, F (3, 52) = 5.237, p = 0.0031;
0–10 ms, F (3, 52) = 3.144, p = 0.0328; 12.2–21 ms, F (3, 52) = 2.869, p = 0.0452; 23.2–32 ms,
F (3, 52) = 4.387, p = 0.0079; one-way ANOVA followed by Tukey post-hoc test; n = 14 slices
from 12 mice). Overall, these data show that upon stimulation of Schaffers collaterals, neuronal
depolarization propagates throughout the CA1 sub-regions at the same velocity but gradually
decreases its divergence during spreading.

Impact of manipulating excitation and neuromodulation on networks dynamics
within the CA1 strata. After quantitatively analyzing the dynamics of evoked depolariza-
tions, propagating within the hippocampal CA1 circuit under basal conditions, we next studied
how manipulation of the circuit can affect the routing of neuronal depolarization while it travels
across the CA1 subfields. We analyzed two different conditions: (i) increasing Schaffers collat-
erals stimulation intensity from 10 to 30 Volts and (ii) application of the synthetic agonist of
cannabinoid type 1 receptor (CB1) HU210 at an intermediate stimulation intensity (20 Volts).
Each of these manipulations should have a mechanistically different impact on the flow of depo-
larization through the CA1 network, since increased stimulation intensity is able to recruit more
axonal fibers, whereas activation of CB1 receptors is very well-known to regulate neurotransmit-
ters release in the hippocampus [21]. We first considered how the two manipulations impact the
magnitude of neuronal depolarization. Increasing the stimulation of Schaffers collaterals from 10
to 30 Volts significantly amplified the magnitude of neuronal depolarization in the whole CA1
network throughout the duration of propagation (Figure 4.2(A)). This effect was present in all
the CA1 sub-layers (Figure 4.2(B)-(E)). Conversely, application of HU210 (1 µM) did not change
the overall intensity of neuronal depolarization in the CA1 region as a whole (Figure 4.2(F)), but
it slightly but significantly decreased the signal in the pyramidal layer and particularly during
the early/rising phase of signal spreading (Figure 4.2(H); see time course and inset bar chart).
Next, we considered how the two manipulations influence the velocity of spreading of neuronal
depolarization. Signals elicited by 30 Volts stimulation reached peak velocity 2.2 ms earlier than
those elicited by 10 Volts, and then decayed more slowly. In addition, stimulation at 30 Volts
was associated with a significantly lower signal velocity during the middle-end of propagation
(Figure 4.3(A)-(E)). While the impact of stronger stimulation on velocity were similar through-
out the CA1 sub-fields,the activation of CB1 receptors by HU210 decreased velocity of the VSDI
signal specifically in the stratum oriens and in the pyramidal layer, an influence confined to the
early phase of spreading (Figure 4.3(G) and (H); see time course). Divergence, in the whole CA1,
was significantly lower throughout the response when Schaffer’s collaterals were stimulated at
30 Volts as compared to 10 Volts (Figure 4.4(A)). This was true for all phases of the response
in all CA1 sub-fields (Figure 4.4(B)-(E)), with the one exception of the early phase response
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Figure 4.1. Layer-specific characterization of VSDI-recorded propagating depo-
larizations in the CA1 hippocampal area.
(A) Representative frame, taken 10 ms after stimulus onset, shows VSDI-recorded
depolarization spread throughout the CA1. Depolarization is color-coded such
that red represents highest values of evoked fluorescence emission (∆F ∗ F −1)
respect to background fluorescence.
(B) Representative spatial arrangement of regions of interest (ROIs) covering the
CA1 subfields.
(C) Mean VSDI-recorded depolarization (∆F ∗ F −1) within the indicated CA1
sub-regions normalized to the respective ROI area.
(D) and (E) show the respective velocity and divergence changes over time.
Both velocity and divergence were calculated by applying the optimal trans-
portation algorithm to the indicated CA1 sub-regions. Str. Oriens = stratum
oriens, Pyr. Layer = pyramidal layer, Radt. Prox. = radiatum proximal, Radt.
Dist. = radiatum distal. Data are presented as mean±SEM. ∗∗∗∗ = p < 0.0001,
∗∗∗ = p < 0.001, ∗∗ = p < 0.01, ∗ = p < 0.05, ns = not significant.
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in the pyramidal layer (Figure 4.4(C)). In contrast, activation of CB1 receptor with HU210 did
not change the time course of signal divergence (Figure 4.4(F)–(J)).

5. Discussion

The spatially-distributed nature of VSDI data requires the development of new methods able to
provide valuable information allowing to overcome the mere quantification of local changes in
membrane potential-dependent fluorescence emission at time-fixed intervals. These results were
obtained using a new approach in the analysis of VSDI data, based on the application of the opti-
mal mass transportation problem centered on Monge–Kantorovich theory, that is a deterministic
plan to transfer a quantity of mass from a starting configuration to a final one by minimizing a
functional cost [33]. In our case, the mass to be transported is the VSDI-recorded depolarization
and the functional cost to be minimized is the distance. The advantages of the present method to
describe spreading of VSDI signals in brain networks as compared to already existing analytical
tools [23, 26, 28, 30, 34] rely on the fact that optimal mass transportation models do not require
tuning of parameters for the analysis and use unbiased underlying deterministic parameters.
With this analysis, we obtained vectorial fields in which each vector represents the shortest
distance travelled by neuronal depolarization in each pixel during its propagation in the CA1
hippocampal neuronal networks at milliseconds time resolution. In this study, the combination of
VSDI and mathematical analysis based on the optimal transportation theory allowed us to char-
acterize the stimulated spreading of depolarization in basal condition and to observe effects that
discriminate between distinct manipulations of neuronal networks, within anatomically defined
sub-regions of the hippocampal CA1 at defined time intervals. Analysis of VSDI data from the
stimulation of Schaffers collaterals in the CA1 region in basal condition underlines how the signal
moves over time at a rather non-uniform speed and tends to converge during its propagation, as
divergence of the underlying optimal transportation mapping decreases over time. This is par-
ticularly evident from a manipulation that busts network activity such as increased stimulation
intensity. This manipulation leads to a slower and less divergent propagation of depolarization
signals throughout the CA1, during the whole propagation period. To explain this somehow
counter intuitive finding, we may speculate that, at equal time intervals, the increased dendritic
spatial summation, provided by the stronger stimulus, leads to a more persistent depolariza-
tion along the dendritic field. This is associated with a decreased signal divergence because of
the sustained converging dendritic inputs. Indeed, voltage sensitive dye imaging reflects mainly
dendritic postsynaptic activity [10]. Another important and somehow surprising finding of the
present study is that while changes in velocity and divergence induced by increased stimulation
intensity are conserved in all CA1 sub-regions, the much less dramatic effects of the activation
of CB1 receptors are layer-specific, as significant decreases in fluorescence emission and signal
peak velocity appear only in stratum oriens and in pyramidal layer. These phenomena may be
explained by the well-defined expression pattern and signaling efficacy of CB1 in the CA1 region
of hippocampus. Indeed, CB1 receptors are expressed both in excitatory pyramidal neurons and
in inhibitory GABAergic interneurons of the hippocampus [24]. Through different mechanisms
including both presynaptic and postsynaptic actions, the activation of CB1 receptors generally
results in a decrease of neuronal excitability [8]. Therefore, application of a CB1 receptor agonist
might in principle induce both inhibition of excitation and of inhibition [8], thereby generating
opposite effects on the control of synaptic transmission. Interestingly, whereas CB1 receptors are
expressed at much higher levels in hippocampal GABAergic interneurons than in glutamatergic
pyramidal neurons, their signaling in the latter cell type appears to be much more efficient [29],
possibly resulting in a net slight and localized inhibition of neuronal signal spreading. Future
studies will determine whether anatomical and functional cell type-specific features of the re-
ceptor underline the effect of CB1 agonism, but In the context of the present study, however,
it is important to notice that the model we propose does not record only major changes in the
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Figure 4.2. Increase in stimulation intensity and treatment with HU210 change
the VSDI signal intensity in the CA1 area. Time course of signal intensity and
corresponding average values (bars) over the indicated time points following stim-
ulation onset, after increase in stimulation intensity (left panel) and application
of HU210 (right panel) for ROIs covering the whole CA1 (A, F), stratum Oriens
(B, G), Pyramidal layer (C, H), stratum Radiatum proximal (D, I) and distal
(E, J). Data are presented as mean ± SEM . ∗∗∗∗ = p < 0.0001, ∗∗∗ = p <
0.001, ∗∗ = p < 0.01, ∗ = p < 0.05, ns = not significant.
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Figure 4.3. Increase in stimulation intensity and treatment with HU210 change
the VSDI signal velocity in the CA1 area. Time course of signal velocity and cor-
responding average values (bars) over the indicated time points following stim-
ulation onset, after increase in stimulation intensity (left panel) and application
of HU210 (right panel) for ROIs covering the whole CA1 (A, F), stratum Oriens
(B, G), Pyramidal layer (C, H), stratum Radiatum proximal (D, I) and distal
(E, J). Data are presented as mean±SEM . ∗∗∗∗ = p < 0.0001, ∗∗∗ = p < 0.001,
∗∗ = p < 0.01, ns = not significant.
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Figure 4.4. Increase in stimulation intensity change the VSDI signal divergence
in the CA1 area. Time course of signal divergence and corresponding average
values (bars) over the indicated time points following stimulation onset, after
increase in stimulation intensity (left panel) and application of HU210 (right
panel) for ROIs covering the whole CA1 (A, F), stratum Oriens (B, G), Pyramidal
layer (C, H), stratum Radiatum proximal (D, I) and distal (E, J). Data are
presented as mean ± SEM . ∗∗∗∗ = p < 0.0001, ∗∗∗ = p < 0.001, ∗∗ = p < 0.01,
∗ = p < 0.05, ns = not significant.
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spreading of neuronal signals (such as the one obtained by increasing stimulation intensity), but
it is sensitive enough to capture even slight but significant variations in these dynamics.

By combining the advantages of VSDI in recording neuronal activity from different region of
interests with millisecond time-resolution and the mathematical analysis of the VSDI data, we
provide a novel and innovative method for the analysis of VSDI data, which might potentially be
used for the extraction of further dynamic information from all imaging techniques. Moreover,
similar methods can be applied to a large range of scales, from single cells to neuronal networks
in different brain regions, both in slices and in vivo. These data will provide a useful novel tool to
further dissect complex phenomena such as spreading of neuronal signals in large brain regions.
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