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Abstract

We are interested in the system of ion channels present at the membrane of the human red blood cell.
The cell, under specific experimental circumstances, presents important variations of its membrane potential
coupled to variations of the main ions’ concentration ensuring its homeostasis.

In this collaborative work between biologists and mathematicians a simple mathematical model is designed
to explain experimental measurements of membrane potential and ion concentrations. Its construction is
presented, as well as illustrative simulations and a calibration of the model on real data measurements.
A sensitivity analysis of the model parameters is performed. The impact of blood sample storage on ion
permeabilities is discussed.

1. Introduction

1.1. Biological motivation

Erythrocytes or red blood cells (RBCs) have evolved to optimize two functions: the transport of
oxygen from lungs to the tissues, and the reverse transport of carbon dioxide. This work is car-
ried out by three highly specialized molecules: i/ hemoglobin pigment which binds oxygen where
its partial pressure is high and releases it where partial pressure is low, ii/ a cytoplasmic carbonic
anhydrase which catalyzes the reversible hydration of CO2 and iii/ a powerful Cl−/HCO−

3 anion
exchanger, a membrane protein called band 3 or SCLC4A1. The latter is a key element of the
Jacob–Stewart cycle which by exchanging HCO−

3 ions for Cl− allows an efficient transport of
CO2 within venous blood (up to 95 %) as bicarbonate ions. Thus, resting membrane potential
is dictated by Cl− conductance. For the sake of simplification, we can say that all the other
membrane transporters are geared to maintain the constancy of volume and elastic properties,
in others words to maintain homeostasis. Nevertheless, erythrocyte membrane is endowed with
several cation transporters including ion channels that may compromise equilibrium. The minor
residual cation leaks can be balanced by the sodium and calcium pumps with only minute meta-
bolic demands. Among the membrane transporters, ion channels have the greatest dissipative
power and can transport millions of ions per second. Another feature of the ionic channels is
their non-electroneutral nature, which, when activated, will cause, at least transiently, a change

Keywords: Red blood cell, erythrocytes, ions transfer, permeability, ODE model, calibration.
2020 Mathematics Subject Classification: 00X99.

1

mailto:stephane.egee@sorbonne-universite.fr
mailto:marie.postel@sorbonne-universite.fr
mailto:benoit.sarels@sorbonne-universite.fr


Stéphane Égée, Marie Postel, et al.

in membrane potential. Although the density of ion channels present at the erythrocyte mem-
brane [4] and their level of activity is much lower than that found in excitable structures such
as neurons [16] and the heart [1], or polarised structures such as epithelial cells [13], there is
growing evidence that these channels are essential throughout the life of the red blood cell. A
better understanding of the impact of their activities under physiological and pathophysiological
conditions is therefore essential.

Red blood cells have two types of cation channels. A potassium channel activated by intra-
cellular Ca2+ concentration (the Gárdos channel, KCNN4) and non-selective cation channels.
To date, two of these channels have been molecularly identified with certainty (the PIEZO1
channel and the TRPV2 channel). These non-selective cation channels are permeable to calcium
and are therefore potentially capable of opening the Gárdos channel indirectly (See Figure 1.1).
However, we have been able to show that such activity directly generates a transient activa-

Figure 1.1. Red blood cell set of most important membrane transporters. The
figure illustrates the main transporters involved in fluxes. Arrows indicate the
direction of net fluxes for each transporter. The left-hand side of the figure de-
scribes the system that maintains the membrane potential close to the equilib-
rium potential for Cl− (−12 mV), comprising the Cl−/HCO−

3 exchanger and a
chloride channel. The other transporters are cationic transporters. On the one
hand, the two essential red blood cell pumps, the 3Na+/2K+ ATPase pump and
the plasma membrane calcium pump, which consume ATP to enable transport
against concentration gradients. One the right-hand side are represented the sec-
ondary active transports, which use the gradients built by the pumps to transport
ions through the chemical or electrochemical gradient. The two main electroneu-
tral transporters (KCl and NKCC cotransporter) are shown in dark green, as are
the three cation channels identified yet in the red blood cell. The Gárdos channel
or KCNN4, the PIEZO1 channel and more recently the TRPV2 channel. The
latter two are non-selective cation channels that are not only permeable to Na+

and K+ but also to calcium.

tion of the Gárdos channel [3]. Furthermore, it is certain that during ageing, whether in vitro
(storage for transfusion purposes) or in vivo (upon cell aging and senescence prior removal from
the circulation), the activity of these channels would be potentially more important and could
compromise cellular homeostasis by dissipating the electrochemical gradients maintained by the
pumps [2, 12]. However, this activity, which can be assimilated to a leak, is difficult to quantify
at the spontaneous resting potential of the cells. Indeed, at the resting potential (−12 mV), the
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cations taken as a whole are at equilibrium and therefore the currents generated are of relatively
low intensity or at least would be masked by the predominance of the chloride conductance.
However, once the Gárdos channel is activated, a hyperpolarisation follows which tends mem-
brane potential towards the Nernst equilibrium potential for K+ (denoted EK in the sequel) but
drives the chlorides and cations (Na+ and K+) away from their respective equilibrium potentials.
Therefore, the intensity of the currents and thus their influence on the membrane potential can
be measured by analysing the repolarisation rate and kinetics.

1.2. Experimental setup and data

Such conditions can be achieved by pharmacological activation of the Gárdos channel by increas-
ing membrane permeability to Ca2+ using a calcium ionophore (A23187, 10 µM, Figure 1.2). In
these series of experiments, cells, kept at 4 °C in their own plasma for one week, are subjected to
a massive calcium influx and the evolution of the membrane potential is followed for 15 minutes.
Changes in membrane potential measurements are obtained using the MBE (Macey, Bennekou,
Egée) method [9] which relies on the proton distribution (see Appendix A for details).

The membrane potential drops sharply from −12 mV to values tending towards the potas-
sium equilibrium potential due to K+ efflux through the Gárdos channels. Then the membrane
gradually repolarises by the joint effects of the non-selective cationic and chloride conductances
present at the red cell membrane.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time(h)

80

60

40

20

0

E(
m

V)

D0
D1
D2
D3
D6

Figure 1.2. Raw membrane potential data after different storage durations (in
days in the legend). D0 denotes fresh blood. The drug A23187 is introduced once
the potential has stabilized around the chloride Nernst equilibrium, at about
−12 mV. The membrane is out of equilibrium until the end of the experiment
when the cells are lysed and the potential instantly rises back to 0 mV.
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Figure 1.3. Statistics of data main features. The resting membrane potential
is the initial condition at equilibrium before introduction of the drug. The max
hyperpolarisation is the minimum potential reached once the K+ have exited the
cell. The end point is the potential reached just before the end of the experiment.
Unit for the three graphs is mV.

Figure 1.3 displays the statistics of the membrane potential and provides some insight on
the interpretation of Figure 1.2. The resting membrane potential in the upper left panel is the
initial value of the potential, at rest before the opening of the potassium channel. It is labeled
Einit in the numerical section (see Table 4.1). The maximum hyperpolarization denoted min E is
displayed in the upper center panel. It is the minimum membrane potential reached shortly after
the channel opening. The final E is measured at 15 minutes just before lysis. It is interesting
to note that the difference between min E and E0 is not monotonous with age, although less so
than min E alone.

In addition to measurements of changes in membrane potential, it is fairly easy to measure in-
tracellular Na+ and K+ concentration under the same experimental conditions (see Appendix A
for details).

Figure 1.4 displays the evolution of Na+ (blue) and K+ (orange) concentrations. Left panel
shows the changes in concentration upon 21 days of storage shedding light on the cation leak
occurring upon storage at 4 °C. These data will provide initial data for our model. Center and
right panels show the evolution of cation contents and water volume up to 4 hours, in the same
conditions used in Figure 1.2. Only data from day 0 are available. Note that the time sampling is
uneven and much coarser (about 10 minutes) than for the membrane potential which is sampled
in seconds but only up to 15 minutes.

1.3. Review of the existing models

The first attempt at modeling the complex system of transport across the erythrocyte membrane
has emerged in the 1980s [11]. It takes into account most of the biochemistry and the electrochem-
istry of the cell known at that time, and aims at covering needs and applications in physiology
and pathophysiology of the red blood cell. Mathematically speaking, it is a differential-algebraic
system of equations in dimension 11. In it, H+, Na+, K+ and Cl− fluxes are modeled and the
kinetics of the different solutes concentrations can be computed, along with the variations of
the membrane potential and the cell pH. However, new experimental setups have shown that a
cationic conductance path participates to electrolytes exchanges (Na+, K+, Ca2+) as soon as the
membrane equilibrium is disrupted. This is taken into account in a more recent version of the
model [14]. In this iteration, the model is even more complex. and requires about 40 parameter
values. The models that we referred to above have – for us – several issues. The first is that none
of them is amenable to mathematical analysis, even as basic as the study of equilibria. Likewise,
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Figure 1.4. Left: Evolution of intracellular K+ and Na+ concentration of RBCs
stored up to 21 days in their own plasma. Results show a symmetrical leak of K+

and Na+ indicating that permeability not anymore compensated by Na-pump at
4 °C exist in RBC membrane. Center: Changes in K+ and Na+ intracellular con-
centrations after challenging RBCs with massive Ca2+ entry by A23187 (10 µM)
injection. After a massive loss of K+ through Gárdos channel, immediate Na+

entry occurs that prolongs at least up for 4 h. Right: Changes in intra cellular
water volume. After a sudden drop, it remains constant, at least during the first
hour after injection.

understanding the role and influence of the parameters is beyond our reach. This is a problem
since we would want, for instance, to make a sensibility analysis and/or confront the outputs
of the model with our experimental measurements. The second issue is the lack of a differential
equation for the time evolution of the membrane potential. Indeed, in [11, 14], the membrane
potential equation is given by the maintenance of electroneutrality. It is an algebraic equation
that is solved numerically through the use of Newton’s method. This approximation may be well
adapted to the “normal” functioning of the red blood cell, where the membrane potential evolves
near its Nernst equilibrium value, on a rather slow time scale. In our setting, the equilibrium has
been disturbed by introducing a drug and opening ionic channels which usually remain closed.
During the relaxation phase of about 10 minutes where the membrane potential goes back to
its equilibrium, the electroneutrality approximation is not justified anymore. Last but not least,
the models in [11, 14] all assume that the membrane permeabilities to ions remain constant with
time. This does not allow to model properly the “swing door” behavior of a ionic channel which
is triggered into action by drug induction and then goes back to its closed resting state.

1.4. Outline

For the reasons mentioned above, our work is a return to the roots of electrophysiology, which
puts the importance of the membrane potential back in the spotlight, and concentrates on the
major time varying features.

In Section 2, we derive our model, a system of ordinary differential equations in dimension 4.
In Section 3, we illustrate its main features with numerical simulations, showcasing two cases of
interest: the one with constant permeabilities, and the one with variable permeabilities with a
motivation for our choice of time varying modeling.

In Section 4, we calibrate our model with the available biological data, validate the method
with a sensitivity analysis and propose a biological interpretation of our results. A number of
technical details have been deferred in the appendix to preserve readability, like the experimental
acquisition setup, the derivation of the objective function gradient as well as the extensive
numerical tests performed to test identifiability and sensitivity.
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In the last section we study the influence of storage on the ion transport by performing the
parameter identification on a set of membrane potential data measured on blood samples that
have been stored for one to six days. To our knowledge this is the first systematical quantitative
study of this kind in the literature. Our results exhibit a strong link between the storage duration
and the permeability to sodium, which is discussed from the biological view point.

All numerical simulations and graphics can be reproduced with the Python codes available
on the Gitlab project https://plmlab.math.cnrs.fr/postel/rbc.

2. Construction of the mathematical model

Our aim is to write a simple model, that will involve as few entities as possible, but still retain the
important features observed in the experimental datasets. In doing so, we deliberately depart
from the models mentioned in the previous section, which share the propriety of being built
of different blocks for each transport pathway. Furthermore, the central role of the membrane
potential is not recognized in these models. Indeed, the membrane potential is only given by the
maintenance of electroneutrality at all time.

We abstract ourselves from the chemico-physical properties of the membrane, and we only
consider as key parameters the membrane permeabilities for each ion.

Let us review the fundamentals of electrophysiology with the theoretical case of a single ion,
following [10]. The membrane of the cell separates the inside from the outside. A ion is an
entity with a (positive or negative) charge. If there is an unbalance of charge between the two
compartments, this gives rise to a potential difference E. By convention, E = Ein − Eout. Let us
denote I the intensity of the current. When current flows, the charge difference changes, and so
the potential difference as well, under the law:

C
dE(t)

dt
+ I(t) = 0, (2.1)

where C is the membrane capacity (C ≈ 10−2 F.m−2).
The current is known through Ohm’s law:

I(t) = gi(E(t) − Ei),

with gi the membrane conductance for ion i and Ei the Nernst potential for ion i.
A typical value for the membrane is graw = 10−9 S.m−2: the membrane is a good electrical

insulator. The presence of ionic channels at the cell membrane allows for gi several orders of
magnitude above. Anion conductance in RBCs, for instance, is 10−5 S.m−2. The Nernst potential
is derived through a now standard thermodynamics argument. Starting from the Nernst–Planck
equation we write the equilibrium between the gradients of concentration and electric field, and
integrate across the membrane to obtain

Ei = RT

ziF
ln
( [i]out

[i]in

)
,

where zi is the ion valence (zi = 1 for K and Na, −1 for Cl), and [i]in and [i]out denote intra-
and extra-cellular concentrations for ion i.

In the end, E is driven by the differential equation:

dE(t)
dt

= gi

C
(Ei − E(t)) = Pi(Ei − E(t)), (2.2)

with Pi the membrane permeability for ion i. Remark that 1
Pi

has units of time: it is indeed a
characteristic time for equilibrium return. As discussed in the first section, we focus here on the
three ions that are most present in the cell: sodium, potassium and chloride. Each ion is allowed
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to cross the membrane by specific ion channels. Thus, a current exists for each. Physically, the
different currents add up, modifying (2.1) as such:

C
dE(t)

dt
+ INa(t) + IK(t) + ICl(t) = 0. (2.3)

Each (ion specific) current has its Ohm’s law:

INa(t) = gNa(E(t) − ENa), IK(t) = gK(E(t) − EK), ICl(t) = gCl(E(t) − ECl).

We can factor out 1
C and we therefore get the differential equation for E as follows:

dE(t)
dt

= PNa(ENa − E(t)) + PK(EK − E(t)) + PCl(ECl − E(t)). (2.4)

Following the seminal paper [5], we make the common assumption that the membrane is
a homogeneous substance and that the electrical field is constant so that the transmembrane
potential varies linearly across the membrane. Then we can express the inner cell concentration of
the ion i as per the Goldman–Hodgkin–Katz flux equation, using the relation IA = − d

dt(zFw[A])
between current IA and the concentration [A] and Ohm’s law:

d[i]in
dt

= − Pi

Vw

ziFE

RT

[i]in − [i]out exp
(
− ziF E

RT

)
1 − exp

(
− ziF E

RT

) (2.5)

where Vw is the intra cellular water volume. Note that in our experimental setup the cells are
diluted at a ratio where it is safe to assume that extra cellular concentrations remain constant
in time. We finally obtain the following system:

dE(t)
dt

= PNa(ENa − E(t)) + PK(EK − E(t)) + PCl(ECl − E(t)),

d[Cl]in
dt

= PClαE

Vw

[Cl]in − [Cl]out exp(αE)
1 − exp(αE) ,

d[Na]in
dt

= −PNaαE

Vw

[Na]in − [Na]out exp(−αE)
1 − exp(−αE) ,

d[K]in
dt

= −PKαE

Vw

[K]in − [K]out exp(−αE)
1 − exp(−αE) ,

(2.6)

where α = F
RT .

We are interested in this system of equations for t > 0, endowed with an initial condition
(E0, [Cl]0, [Na]0, [K]0) ∈ R4

+ for t = 0. In the next section, we will illustrate numerically the
response of our model in two cases of interest: first in the case where the permeabilities are piece
wise constant in Section 3.1, and second in the case where the permeabilities are time-dependent
in Section 3.2. Note that we will keep Vw constant in both cases, although experimental data do
tell us that it drops instantaneously along with the concentrations. However experiments also
tell us that once it has dropped, it remains at its low value at least during the time span of our
experiment. We therefore assume that its piece wise constant behavior is well taken into account
by the permeability model that we will present in the next section.

3. Model numerical simulation

3.1. Evolution of the system solution with constant permeabilities

In the simplest case where the Nernst potential, external concentrations and permeabilities are
assumed to remain constant throughout the experiment, the 4-ode system (2.6) presents a unique
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equilibrium 

E∗ = PNaENa + PKEK + PClECl
PNa + PK + PCl

[Na]∗ = [Na]oute
−αE∗

[K]∗ = [K]oute
−αE∗

[Cl]∗ = [Cl]oute
αE∗

(3.1)

where α = F
RT .

This enables us to interpret the response of the model to a sudden increase in K permeability
in the presence of permeant anions of different permeability. We start from the equilibrium state
corresponding to nominal ion permeabilities PK = PNa = 0.002 h−1, and PCl ∈ {0.2, 2, 20, 200}
(in h−1). All these 4 values are much larger than PK = PNa therefore the equilibrium potential
E∗ = −13.6 mV is basically equal to the Nernst potential for Cl, ECl = −13.58 mV. Then we
mimic the opening of Gárdos channel by multiplying the potassium permeability by 104, bringing
it to PK = 2 h−1. This triggers the evolution of the system towards a new equilibrium. For the
small value of PCl = 0.2 h−1 the potassium becomes dominant and the equilibrium potential
is equal to the Nernst potential for K EK = −113 mV. For the intermediate PCl values 2 h−1

and 20 h−1, the equilibrium potential is intermediate between the Nernst equilibrium of Cl and
K. For PCl = 200 h−1, it is almost back to the original value of the Nernst potential for Cl.
Interestingly, the return to equilibrium happens basically on the same time scale in the 4 cases
of PCl value.

0.00 0.25 0.50 0.75 1.00

100

80

60

40

20
E (mV)

PCl

0.2
2.0
20.0
200.0
EK

ECl

0.00 0.25 0.50 0.75 1.009.5

10.0

10.5

11.0

11.5

12.0 [Na] (mmol/lcw)

0.00 0.25 0.50 0.75 1.00
Time(h.)

0
25
50
75

100
125

[K] (mmol/lcw)

0.00 0.25 0.50 0.75 1.00
Time(h.)

0

20

40

60

80

[Cl] (mmol/lcw)

Figure 3.1. Response of the model to a sudden increase in K permeability in
the presence of permeant anions of different permeability. Upper left : membrane
potential (the magenta dashed line show the Nernst potential for potassium, the
yellow line the Nernst potential for chloride), upper right : intracellular sodium
concentration, lower left : intracellular potassium concentration, lower right : in-
tracellular chloride concentration. Color code according to the anion permeability
(0.2 (red), 2 (blue), 20 (black), 200 (green). The dashed horizontal lines indicate
the corresponding equilibrium values after multiplying PK by 104. Other param-
eter values are in Table 3.1
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On the other hand the concentrations display a very different behaviour. Opening the Gárdos
channel triggers the exit of potassium, as well as entrance of sodium. Consequently anion chloride
exits the cell to ensure ion balance. The speed at which the three ions reach their equilibrium
state is directly related to their permeability, which appears as a multiplying factor in the ODE
right hand side. It also depends indirectly on the anion permeability through the dependance on
E. As expected it is faster for the chloride when PCl = 20 h−1 or 200 h−1. If we let the simulation
go on we observe that after 2 hours the potassium has reached its equilibrium, earlier for large
PCl. The sodium (whose permeability has not been increased in this simulation) would reach its
equilibrium thousands of hours later. The initial values for ion concentrations are displayed in
Table 3.1.

Table 3.1. Parameters values. [Na]in, [K]in and [Cl]in are used as initial condi-
tions for the concentrations in model (2.6).

Parameters Values Unit Description
Vw 0.75 (l/loc) intra cellular water volume
F 96 485 C.mol−1 Faraday constant
R 8.314 J.K−1.mol−1 perfect gas constant
T 310 K Temperature
α 0.037 mV−1 α = F

RT

PNa 0.002
h−1 membrane ion permeabilitiesPK 0.002

PCl 20
[Na]out 156

mM extra cellular concentrations[K]out 2
[Cl]out 158
[Na]in 10

mM intra cellular concentrations[K]in 140
[Cl]in 95
ENa 73.35

mV Nernst equilibrium potentialsEK −113.43
ECl −13.58

3.2. Time variable permeability to mimic the transient nature of the channels

Opening an ion channel is a transient phenomenon. It triggers a massive entrance or exit of ions
in the cell whose immediate effect is to change the membrane potential. The new value is closer
to the Nernst equilibrium value of the ion which has been favoured by the channel opening.
The previous numerical simulation shows that some allowance should be made to other pre
existing dominant ions. The experimental data displayed in Figure 1.2 shows that the membrane
potential drops toward the potassium Nernst equilibrium. However it does not remain at this
low level, as the mathematical model would predict it, but increases again slowly. In order to
enable our mathematical model to mimic this behavior, we introduce a time dependance in the
ion permeabilities

Pi(t) = Pi

(
(Mi − 1).e−Ri.(t−tinj) + 1

)
, i ∈ {Na, K, Cl}, t ≥ tinj (3.2)

9
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where Mi and Ri are respectively the multiplier and the relaxation coefficient for ion i, with
respect to its nominal permeability Pi. This ansatz for the time varying permeabilities is quite
natural. Decreasing exponentials are standardly used to model relaxation phenomena, for in-
stance in pharmacology or nuclear physics.

At the time of the injection (or channel opening) the permeability is the nominal value mul-
tiplied by Mi : P (tinj) = MiPi. If the multiplier Mi = 1 the permeability remains equal to Pi

at all times. If the relaxation coefficient Ri = 0, P (t) remains equal to P (tinj) = MiPi for all
t ≥ tinj, otherwise it comes back to its nominal value asymptotically as t → tinj. Figure 3.2
displays some numerical exemples for MK = 104 and four values for the potassium permeabil-
ity relaxation coefficient. All other parameters are kept constant. As shown on right panel of
Figure 3, the volume drops significantly after the drug injection, but then remains constant.
At the level of complexity of our model, its variation is therefore well taken into account by
the multiplying factors in the permeabilities. The membrane potential is displayed on the right
panel with the same color code as the potassium. As the potassium permeability goes back to
its nominal value, the membrane potential goes back to its equilibrium value before the channel
opening, E∗ = −13.6 mV, with a speed proportional to the relaxation coefficient.
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Figure 3.2. Time varying potassium permeability (left panel) and influence
on the membrane potential (right panel) for P K = 0.002 h−1. The multiplying
coefficient MK = 104 and the relaxation coefficient RK ∈ {0, 1, 10, 100}. Injection
happens at time t = 0. Na and Cl permeabilities are kept constant PNa = P K =
0.002 h−1, PCl = 20 h−1.

Having thus explored the influence of some parameters on the numerical outputs of the model,
we address in the next section its adequacy to explain the available experimental data.

4. Model calibration

In this section we compare our model to experimental data. Two questions are addressed: that
of the identifiability of the model and that of its adequacy to qualitatively reproduce the ex-
periments carried out in vitro. We first show, using the non adequate but simple constant
permeability model, that membrane potential data alone is not sufficient to identify the three
ionic permeabilities. We tackle this difficulty by including concentration data in our parameter
identification process. The second point is indeed the justification of our choice of model for the
time varying permeabilities, which we achieve by fitting with the available data in the parameter
space of dimension 6.
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4.1. Calibration method

As explained in the introduction several types of measurements have been performed on exper-
imental data. Indeed, for day 0, we are in a favorable situation where several outputs of the
model, namely the membrane potential and the inner concentrations of sodium and potassium
ions, can be directly confronted to experimental values. However the statistical quality of these
measurements is very good for membrane potential thanks to the small time acquisition step and
the redundancy made possible by several measurements on similar blood samples. In comparison
the ions concentrations measurements have more a qualitative value. Furthermore, for stored
samples (labeled day 1, 2, 3 and 6) only potential measurements are available to calibrate the
time dependent permeabilities.

Indeed if the permeabilities are kept constant, we have a simple explicit formula for the
potential

E(t) =
(

E(0) − C

S

)
e−St + C

S
,

where S =
∑

i∈{Na,Cl,K} Pi and C =
∑

i∈{Na,Cl,K} PiEi. This implies that fitting only on potential
data allows to recover only the global parameters S and C. The three ion permeabilities are
not identifiable from these two values. In the case of time varying permeabilities the situation
improves. We still have a formula for the potential

E(t) = E(0) exp
(∫ t

0
−S(u)du

)
+
∫ t

0
C(s) exp

(∫ t

s
−S(u)du

)
ds, (4.1)

since S and C now depend on time. One could hope that the non linear behavior of the per-
meabilities with respect to time (3.2) would improve the identifiability. We have not addressed
this theoretical issue in this work. Indeed, discretization of (4.1) expresses (E(ti))i in terms of
(S(ti), C(ti))i. If the range of values is large enough (theoretically more than 6 values, but in
practice in the least square sense) can we recover the six parameters (Mk, Rk) for k ∈ {Na, K, Cl}
defining the Pk(t)?

To explore numerically this possibility we design two fit functions. The first one measure only
the fit with the membrane potential

J(a) =
∑N

k=0(Ea(tj) − Edata
j )2∑N

j=0
(
Edata

j

)2 (4.2)

where a ∈ R6 contains the parameter values, with aj = Mij and aj+3 = Rij , for j = 1, . . . , 3 and
the ion ordering i1 = Na, i2 = K, i3 = Cl. In (4.2) the times of data acquisition are denoted by

t0 = tinj < t1 < · · · < tN = tend. (4.3)
The second fit function includes two terms taking into account the fit with Nc values of sodium
and potassium concentrations. We recall that unfortunately no data is available for chloride
concentration.

Jc(a) =
N∑

k=0
αE

(
Ea(tj) − Edata

j

)2
+ αNa

Nc∑
k=0

(
[Na](tc

k) − [Na]data
k

)2

+ αK

Nc∑
k=0

(
[K](tc

k) − [K]data
k

)2
, (4.4)

with

αE = 1∑N
j=0

(
Edata

j

)2 , αNa = 1∑Nc
j=1

(
[Na]data

j

)2 , αK = 1∑Nc
j=1

(
[K]data

j

)2 . (4.5)

The coefficients αE , αNa and αK take into account the scale of each dataset and its sparsity.
Indeed our choice ensures that the optimized parameters produce a good fit with the membrane
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potential while selecting among the various local minima the best one with respect to both the
sodium and the potassium datasets.

To study the sensibility of the fit functions with respect to parameters we first generate a
numerical solution of the ODE model (2.6), on the time interval [0, 0.5], using parameters in
Table 3.1, and coefficients of Table 4.2 (line ‘opt’) denoted in the sequel as “true values”. These
values will be justified in details in Section 4.2. We use this numerical solution as “synthetic” data
and study the influence of the parameters a on J(a) and Jc(a) (see Appendix B for details). It
turns out that minimizing J(a) alone is not enough to recover the parameters. On the other hand,
minimizing Jc(a) with Nc = 2, that is, including the first two concentrations at t1

c = 0.083 h and
t2
c = 0.42 h provides a satisfactory solution, moreover robust with respect to the initial condition

of the minimization strategy.

4.2. Calibration of the model using experimental data

Relying on the previous study we now turn to the numerical calibration of the model using
the experimental data presented in Section 1. We have five datasets for membrane potential
corresponding to fresh blood and four storage durations of 1, 2, 3 and 6 days. About 900 potential
values are available between tinj = 0.0036 h and tend = 0.245 h which denote respectively the
time of the drug injection and the end of the experiment by cell lysis.

Table 4.1. Top table: nominal permeabilities [11]. Bottom table: resting mem-
brane potential and initial conditions for sodium and potassium concentrations
at time 0 for storage durations of 0,1,2,3, and 6 days. Einit, [Na]in and [K]in are
used as initial conditions in (2.6). All the other parameter values are in Table 3.1.

Parameters Values Unit
PNa 0.001518

h−1PK 0.001651
PCl 1.2

Storage (day) Einit (mV) [Na]in (mM) [K]in (mM)
0 −11.37 27 119
1 −12.76 26 127
2 −11.65 33 119
3 −11.36 37 115
6 −9.58 46 102

For the fresh blood we also have some values of concentrations for Na and K ions, unfortunately
on a much coarser time grid, which constitute nevertheless priceless control points. We therefore
incorporate in Jc the fit with sodium and potassium concentrations at t1

c = 0.083 h and t2
c =

0.42 h.
We seek a minimum of Jc(a) in the admissible domain defined as DA =

∏6
i=1[Li, Ui] with Li

and Ui some bounds imposed to the parameters ai from biological considerations. Basically the
permeabilities should increase at the channel opening, therefore we set Li = 1 and Ui = 107

for i = 1, 2, 3. The relaxation factors should be some positive coefficients. Furthermore, to avoid
overflows in the exponential in (3.2) we set Li = 0 and Ui = 106 for i = 4, 5, 6. Starting from
scratch, finding a set of parameters leading to a good fit requires many trials. Indeed some
combinations of parameters randomly chosen in the admissible domain lead to very small time
steps leading to unaccurate solutions of the ODE. We found it more efficient to reduce somewhat
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the admissible domain and to use a stochastic minimization method, CMAES [6]. This algorithm
can be restarted with random seed and we found that it converges to roughly the same solution
for all trials. The bounds and the optimal parameters are gathered in Table 4.2. The solution
and the corresponding permeabilities are displayed in Figure 4.1. The most striking feature in
this solution is the time scale difference between the sodium on the one hand and the potassium
and chloride on the other hand. The abscissa have been shifted and time 0 corresponds to
the injection of the drug. This is mimicked by the model by an instantaneous increase of the
permeabilities, obtained by multiplying each nominal value Pj in Table 4.1 by its corresponding
multiplier Mj in Table 4.2. The permeability to sodium is multiplied by 341, therefore reaching
0.51, when the permeabilities to potassium and chloride were multiplied respectively by 106

and 7781, reaching respectively 1731 h−1 and 9337 h−1. To fit both the membrane potential
and the sodium and potassium concentrations it turns out that the membrane permeabilities
to potassium and chloride have to relax very quickly back to their nominal values, while the
sodium behavior is much slower. Accordingly, the concentrations in ions K and Cl drop very
quickly after the injection of the drug, corresponding to this very fast permeability relaxation,
while the sodium concentration slowly rises.
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Figure 4.1. Best fit with day 0 dataset (no storage), obtained by minimization
of fit function (4.4) with respect to permeability multipliers and relaxation coef-
ficients. Data : membrane potential (in red in upper left panel), and sodium and
potassium concentrations, in mmol/lcw, at t1

c = 0.083 h and t2
c = 0.42 h (blue

stars in upper right and lower left panels). Model solution in green solid lines,
scale on the left axes. The permeabilities, in h−1, are plotted in dotted lines with
scale on the right axes, in the same panels as the concentrations.

In Appendix D we describe in details how the sensitivity analysis is performed, by drawing
level surface for the fit functions J(a) and Jc(a) and computing the Sobol indices for each of
the 6 parameters. Not surprisingly the parameters MNa, RNa, MK and RK which define the
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Table 4.2. Bounds and optimal values for parameter fit with the day 0 dataset.

M[i] R[i] (h−1)
MNa MK MCl RNa RK RCl

min 1 1 1 0 0 0
opt 341 1048931 7781 15 716 2296
max 10000 2000000 10000 10000 10000 10000

sodium and potassium permeabilities have a greater influence on Jc(a) than the two coefficients
of the chloride permeability. Indeed since no data is available for chloride concentration, these
parameters influence on the fit is more indirect than the Na and K permeabilities which are
directly driving the corresponding ion concentrations.

5. Influence of the storage duration

We now investigate the influence of the storage duration on the membrane properties. Our main
result is that the permeability to sodium, which is negligible in the fresh blood experiment, is
much influenced by the storage duration. To make this statement more robust, we also present
in this section a sensitivity analysis on our parameter identification.

We perform a parameter identification for each available dataset, corresponding to storage of
1, 2, 3 and 6 days.

Except for time 0, which is used as initial condition for the ODE system, there are no available
experimental values for [Na] and [K]. We can therefore only use the fit J(a), on the experimental
membrane potential (4.2). For each dataset we initialize the search with the optimal parameters
p0 = (p0

i )i=1,6 found for the previous day, which is a good enough initial guess. The minimization
of the fit function J(a) (4.2) with respect to the parameter vector a is performed using the Python
function minimize of the scipy.optimize package. We select the L-BFGS-B algorithm which
is well suited to bounds constrained problems [17]. Of note, the upper bound for MCl has been
increased to 50000. This algorithm performs better when the gradient of the objective function
is provided. From the definition (4.2) it is obvious that computing ∇J(a) requires the derivatives
of the model output with respect to a. These are obtained by solving the ODE system obtained
by differentiating (2.6) with respect to each parameter (see Appendix C).

Table 5.1. Optimal parameters for each age dataset, leading to the fit displayed
in Figure 5.1. The corresponding time variation of the permeabilities are displayed
in Figure 5.3.

M[i] R[i] (h−1) T[i] (h) Error
Age MNa MK MCl RNa RK RCl TNa TK TCl

0 309 1048922 6516 7 666 1994 1.202 0.024 0.006 1.670e-04
1 715 1048851 11251 7 709 2972 1.364 0.023 0.004 1.730e-04
2 1032 1048667 21102 5 680 3053 1.759 0.024 0.004 2.542e-04
3 1385 1048667 21074 5 717 3426 2.042 0.023 0.004 4.530e-04
6 2488 1048666 21106 5 683 2780 2.027 0.024 0.004 1.417e-03

For each storage duration, the potential computed by the model, with the parameters corre-
sponding to the best fit, is displayed in green in Figure 5.1 along with the experimental dataset
in orange and blue. The time range entering the fit function corresponds to the orange section.
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The initial condition (“E init” in black in Figure 5.1) is set for each dataset by fitting a con-
stant value to the potential values before the injection time, whose numerical value is found in
Table 4.1.

The value of the fit J(a) for different age datasets is displayed on the bottom right panel of
this Figure 5.1.
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Figure 5.1. Best fits obtained by minimization of fit function (4.2) with respect
to permeability multipliers and relaxation coefficients. Blue curves are the mem-
brane potential averaged over the available datasets for a given storage duration
(age). Black horizontal line over the short time range before the injection is the
initial condition for the potential. Orange curves highlight the time range used in
the fit function. Green curves are the model response computed with the optimal
parameters. The last panel displays the relative least square error between the
data and model response as a function of age.
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To better analyse the evolution of the fit as the storage duration increases we display in Fig-
ure 5.2 the absolute (left panel) and relative (right panel) errors between the potential datasets
and the output of the model as a function of time. Clearly there is a dominating error at the
beginning of the experiment. It is due in part to the difficulty in catching the exact moment
of the potential drop. This bias also comes from the fact that the potential equilibrium is not
completely reached at the beginning of the experiment. In the remaining part of the experiment,
where the potential rises back towards its equilibrium state, the error behaves well for short
storage durations. The bias increases with the storage duration. This is an indication that our
model is indeed simple and should be refined to take into account more sophisticated interac-
tions and possibly additional influences. Nevertheless the relative errors lie within the five per
cent band except for day 6 dataset of storage where it still remains beyond ten per cent.
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Figure 5.2. Absolute Eexp − E(t) (left panel) and relative (Eexp − E(t))/Eexp

errors (right panel) between experimental and numerical membrane potential.
Only one point every five is plotted to improve the readability of the graphs.
Times have been shifted so that t = 0 correspond to the injection of the drug.

In order to study the evolution of the model parameters with age we define a relaxation time
T[i], for each ion [i]. T[i] denotes the time beyond which the [i] ion permeability has decreased
back to ten per cent of its nominal value.

T[i] = inf{t ∈ R, t ≥ tinj, P[i](t) = s P [i]} (5.1)

with s = 1.1. Using the definition of the ion permeability (3.2), the explicit formula for T[i] as a
function of Mi and Ri is

T[i] = max

0, −
ln
(

s−1
M[i]−1

)
R[i]

 . (5.2)

Figure 5.3 and Table 5.1 show that the permeabilities to potassium and chloride are not very
much affected by the storage. The permeabilities to these two ions are multiplied by sensibly the
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Figure 5.3. Time varying sodium (top left), potassium (top right) and chloride
(bottom left) permeabilities for fresh blood and samples stored for 1,2,3 and 6
days. Formula (3.2) computed with the optimal parameters in Table 5.1 obtained
from fitting the model for each storage duration. Times have been shifted so that
t = 0 correspond to the injection of the drug. The bottom right panel displays
the total Sobol indices of the six parameters.

same large number to mimic the injection of the drug, and they relax very fast to their nominal
values, in less than 2 minutes for potassium and about 15 seconds for chloride. Note that the time
scale has been blown out in the top right (K) and bottom left (Cl) panels of Figure 5.3 to observe
the very fast decay of these permeabilities which return to their nominal values in a few seconds.
Furthermore the chloride permeabilities are plotted in log scale to distinguish the differences
for various days. On the contrary storage seems to influence a lot the permeability to sodium.
The multiplying coefficient steadily increases with age, and the relaxation times increase, from
1.2 to 2 hours. This means that for all storage durations, the permeability to sodium has not
recovered its nominal value at the end of the experiment. Since the three ion permeabilities vary
on very different scales, roughly 110-1000 for Na, about 106 for K and 104 for Cl, we check the
sensitivity of the fit to the various model parameters in a quantitative manner, before giving
biological interpretation. In Appendix D we compute the first and second order and total Sobol
indices of the six parameters on the least-square fit J(a) of the membrane potential with real
data, for the five datasets. The bottom right panel of Figure 5.3 displays the evolution of the
total Sobol indices as a function of the storage duration. We notice that the two parameters of K
permeability, MK in orange and RK in violet, and the relaxation coefficient RCl in black, remain
the most influential factors for all 5 fits. MCl and RNa Sobol indices remain negligible. The MNa
amplitude coefficient in the sodium permeability (in blue), which has a negligible impact (that
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is lower to 0.05) on the fit with fresh blood data, becomes more and more important and has
an influence comparable to MK for the 6-day dataset.

This result indicates that Na+ permeability must play a major role in the evolution of the
response observed following activation of the Gárdos channel. It is clear that the procedure used
allows maximum activation of the Gárdos channel, which remains constant throughout the 6-
day of the experiment. The chloride conductance, which is already 3 orders of magnitude higher
than all the others, can vary only slightly. However, for sodium permeability, the reality is rather
different. Once the hyperpolarization potential has been reached, and if we consider that the
intensity of the cationic currents which will generate repolarization depends on the driving force,
this is more or less identical from day 0 to day 6. This therefore implies that permeability per se
increases over the storage time. This echoes the work carried out on the terminal density reversal
phenomenon observed during the terminal senescence of red blood cells in the circulation, which
become highly permeable to cations to the point of reversing the Na+/K+ gradient [12]. This
phenomenon, combined with the present results, implies that as red blood cells age, in vivo or in
vitro, inhibition of this permeability is withdrawn. It is important to note that since red blood
cells have no capacity for translation and therefore no capacity to express a new set of proteins,
any alteration in their permeability properties can only be attributed to intrinsic mechanisms.
More importantly, the results presented here definitely point to this cationic permeability being
generated by a conductive pathway. Finally, the predominance of the effect of this conductance
in the repolarisation phenomenon, although it is 2 to 3 orders of magnitude lower than that for
anions, can be explained by the fact that during activation of the Gárdos channel, the cell is
not only totally depleted in K+ but also in Cl−. The latter is also rate limiting for K+ efflux.
So, even if the anionic conductance remains higher than the cationic permeability, the driving
force for cations entry (Na+) becomes the predominant one in the flux. Finally, bearing in mind
that the passage of a few ions in a non-electroneutral fashion can generate a large variation
in membrane potential, a simple non-selective cationic conductance whose current is no longer
repressed can explain the phenomenon observed here.

6. Conclusion

We have presented and analysed experimental data where ion transport are drug induced, and
showed the influence of storage on ion transport. On the modeling side, we found it interesting to
write a simple model that puts the membrane potential back at the center of the game as in the
founding papers of electrophysiology. We have proposed a time varying model for the membrane
permeabilities which is coherent with the experimental set-up and relays on only two parameters
per ion. The solution of the mathematical model for the membrane potential and the three ions
concentrations mimics correctly the experiments. To calibrate the parameters of the model we
have designed a fit function taking into account different types of datasets, membrane potential
and concentrations, and performed a sensitivity analysis of the fit function with respect to the six
unknown parameters. The data fit results are very good in term of residual error, which remains
below 5 % except for the longest storage where it reaches 10 %. The sensitivity analysis and
the evolution of the permeabilities of our model with the storage duration provide interesting
insights to interpret from the biological point of view the variability of the datasets.

Indeed this simple model highlights the importance of conductance pathways in membrane
transport phenomena. From a more general perspective, although the terminal density reversal
phenomenon has been extensively discussed in the literature, little has been reported on long
storage for transfusion purposes, where storage at 4 °C also blocks the pumps. Although calcium
depletion in the storage medium prevents sporadic and massive activation of the Gárdos channel,
cation leak persists and significantly alters ion concentrations in red blood cells. In addition,
preliminary data clearly show that overactivation of the cationic conductance(s) occurs from the
first 20 days of storage and increases with time, raising the question of the fate of these cells
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once reinfused into patients. Knowing that the quality of transfusion bags is a major issue for
the years to come, a simple measurement combined with a predictive model would make it easy
to qualify transfusion bags for a safer future for patients. Finally, another neglected situation
that could have major consequences is that of diabetic patients whose cells age more rapidly as a
result of glycation of haemoglobin and membrane proteins. This is notably due to impairment of
the Ca2+ ATPase pump. While the conductive nature of the permeability pathway is no longer
in dispute, its capacity to be permeable to Ca2+ adds a further threat to the survival of red
blood cells within the circulation, where a massive alteration in volume and therefore shape
will definitely affect the rheological properties of the red blood cell and therefore accelerate its
clearance and removal from circulation.

Several possible extensions of this model would be interesting to study. First, one possibility
would be to allow the Nernst potentials to vary. In a second step, we could extend our model
in dimension 5, taking into account an additional cation, in this case calcium. This would
require additional precautions since calcium is present at much lower orders of magnitude, and
would therefore probably require multi-scale work. Eventually, since the membrane potential
experimental values exhibit strong dependance on the duration of storage, it is tempting to
generalize the model to a multiscale model where the solution depends both on time and on age.

Appendix A. Biological data acquisition

Changes in membrane potential measurements are obtained using the MBE (Macey, Bennekou,
Egée) method [9] which relies on the proton distribution. Indeed, membrane potential can be
determined indirectly by measuring the ratio of a suitable passively distributed ion. To fasten
proton distribution, the CCCP protonophore (Carbonylcyanure m-chlorophénylhydrazone) is
used. CCCP is a weak acid that readily permeates the membrane both as a free acid (HA)
and as a free anion (A−) and thereby acts as a proton carrier over the cell membrane. The
extracellular and intracellular pH can be expressed as:

pHout = pKa + log [A−]out
[HA]out

,

and
pHin = pKa + log [A−]in

[HA]in
.

At equilibrium, [HA]out = [HA]in and the difference between pHout and pHin will reflect the
anion distribution across the membrane:

pHout − pHin =
(

pKa + log [A−]out
[HA]out

)
−
(

pKa + log [A−]in
[HA]in

)

= log [HA]in
[HA]out

.

The Nernst potential for the anion is

E[A−] = ZF

RT
ln [A−]out

[A−]in
= −61.5 log [A−]out

[A−]in
.

at 37 °C. At equilibrium the anion Nernst potential is equal to the membrane potential

Vm = E[A−] = −61.5 log [A−]out
[A−]in

= −61.5 (pHout − pHin) .

As a result of a change in the membrane potential, the proton distribution will adjust and the
membrane potential change is given by:

∆Vm = −61.5 (∆pHout − ∆pHin) .
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In a completely unbuffered external medium and with a highly buffered intracellular medium,
mainly from hemoglobin, the intracellular pH is practically constant. Therefore, any changes in
the membrane potential can be calculated as:

∆Vm = −61.5 ∆pHout.

The zero potential (pHout = pHin) is obtained by addition of the detergent Triton X-100, which
causes a total disintegration of the cells, and the extracellular pH attains the same value as the
original intracellular pH. This method describes a way to estimate the membrane potential by
measuring changes in extracellular pH, ending with the absolute calibration.

Intracellular Na+ and K+ concentrations are measured under the same experimental condi-
tions, as well as cell volume, or more precisely water content as a proxy for volume. Briefly,
0.5 mL aliquots of the cell suspension were taken at each timepoint, distributed in Beckman
polyethylene micro test tubes (Dutscher, France) and centrifuged at 19600 rcf for 7 minutes at
10 °C. After centrifugation, the packed cell mass was separated from the supernatant by slicing
the tube with a razor blade below the top of the red cell column prior weighting. For volume
measurements, after weighting, the packed RBCs cells were dried to constant weight for at least
48 hours at 90 °C and re-weighted. RBC volume depends on the intracellular water content,
which is estimated to be about 90 fL for a healthy discocyte. Shape change can be misleading in
the estimation of the cell’s water content due to the great plasticity of the red cell membrane.
These measurements are independent of cell shape. For Na+ and K+ content measurement, the
packed cells within the sliced tubes were lysed in 1 mL MilliQ water. Proteins were denatured
to ease separation by addition of 232 µM of perchloric acid. The tubes were spun at 12000 rcf
for 7.5 minutes at 4 °C and the supernatant was passed onto sample tubes and diluted 10 times.
The ionic content was measured using a flame photometer (PFP7 Jenway, France). The amounts
of Na+ and K+ measured are reported as mmol/litre of cell water.

Appendix B. Identifiability on synthetic data

In this appendix we address the identifiability of the model using only membrane potential data.
We design the fit function

J(a) =
∑N

k=0(Ea(tj) − Edata
j )2∑N

j=0
(
Edata

j

)2 (B.1)

where a ∈ R6 contains the parameter values, with aj = Mij and aj+3 = Rij , for j = 1, . . . , 3 and
the ion ordering i1 = Na, i2 = K, i3 = Cl. In (B.1) the times of data acquisition are denoted by

t0 = tinj < t1 < · · · < tN = tend. (B.2)

To study the sensibility of the fit function with respect to parameters we first generate a numer-
ical solution of the ODE model (2.6), on the time interval [0, 0.5], using parameters in Table 3.1,
and coefficients of Table 4.2 (line ‘opt’) denoted in the sequel as “true” values. These values
will be justified in details in Section 4.2. We use this numerical solution as “synthetic” data and
compute J(a) in two scenarii. First we keep the parameters MK, RK, MCl, RCl constant equal
to the true values used to generate the “synthetic” dataset, and we let MNa and RNa vary in a
window of 10 per cent around their true value. The left panel of Figure B.1 displays the level of
J(a) computed in this domain. The minima of J is displayed by a white cross + which matches
exactly the true position indicated by a red ×. Then we set MK, RK to one per cent higher
than their true value and MCl, RCl one per cent lower, and compute J(a) for MNa and RNa in a
window of 10 per cent around their true value. We see on the right panel of Figure B.1 that the
minimum at the white cross +, is now far away from the true position ×. This is not surprising
but the real bad news is that the dark blue area, where J is close to its minimum, is much
larger than in the ideal case. This observation plus other numerical attempts at minimizing J(a)
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starting from various initial conditions, convince us that without prior information, E data are
not sufficient to identify the model parameters.
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Figure B.1. Level of J(a) against MNa and RNa for experimental data obtained
by simulating (2.6) with parameter values in Table 3.1. In left panel MK, RK,
MCl, RCl are kept equal to the values in Table 4.2. In right panel MK, RK are
set 1 % higher, and MCl, RCl 1 % lower than the values in Table 4.2. The minima
of J is denoted by a white cross +, the true position by a red ×.

We therefore propose to weight the objective function by two terms taking into account the
fit with Nc values of sodium and potassium concentrations.

Jc(a) =
N∑

k=0
αE

(
Ea(tj) − Edata

j

)2
+ αNa

Nc∑
k=0

(
[Na](tc

k) − [Na]data
k

)2

+ αK

Nc∑
k=0

(
[K](tc

k) − [K]data
k

)2
(B.3)

with

αE = 1∑N
j=0

(
Edata

j

)2 , αNa = 1∑Nc
j=1

(
[Na]data

j

)2 , αK = 1∑Nc
j=1

(
[K]data

j

)2 .

The coefficients αE , αNa and αK take into account the scale of each dataset and its sparsity.
Indeed they ensure that the optimized parameters produce a good fit with the membrane po-
tential while selecting among the various local minima the best one with respect to both the
sodium and the potassium datasets.

In our preliminary study using our ideal dataset we first test the behavior of Jc(a) in the
case where the sodium and potassium concentrations are available on the same time grid as
the membrane potential. Figure B.2 displays the level of Jc(a) for Nc = N and all things equal
otherwise to Figure B.1. We see on the right panel that the minimum of Jc (×) remains much
closer to the true location (+) than when only E is used. The vicinity of the minimum, in dark
blue, is also sharper using Na and K.

We now study the realistic configurations corresponding to the available experimental data.
Besides the values at t = 0 which are used as initial condition for the ODE system, only the first
measured value at tc

1 = 5 min (0.083 h) is in the time range of the membrane potential dataset.
The second one at tc

2 = 25 min (0.42 h) already lies outside the time range. We will consider
both cases Nc ∈ {1, 2}.

In Figure B.3 we see that almost all the benefits of using Na and K data is lost if only one
point is used, here the one at t = 0.083 h, in the time range [0, 0.25] of the potential dataset.
The area of the minimum of Jc, in dark blue, is enlarged compared to that of Figure B.2 where
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Figure B.2. Level of Jc(a) against MNa and RNa for experimental data obtained
by simulating (2.6) with parameter values in Table 3.1. The minima of J is
denoted by a white cross +, the true position by a red ×. In left panel MK, RK,
MCl, RCl are kept equal to the values in Table 4.2. In right panel MK, RK are set
1 % higher, and MCl, RCl 1 % lower than the values in Table 4.2. In (B.3) tc

k = tk

for k = 1, . . . , N = Nc.
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Figure B.3. Level of Jc(a) against MNa and RNa for experimental data obtained
by simulating (2.6) with parameter values in Table 3.1. The minima of J is
denoted by a white cross +, the true position by a red ×. In left panel MK, RK,
MCl, RCl are kept equal to the values in Table 4.2. In right panel MK, RK are
set 1 % higher, and MCl, RCl 1 % lower than the values in Table 4.2. In (B.3)
N = 896, tN = 0.294 h; and only one concentration is used to match with [Na]
and [K]: Nc = 1 and tc

1 = 0.083 h.

full concentrations datasets where used. The right panel also shows that in the case where the
potassium and chloride permeabilities are shifted by 1 %, the minimum of Jc misses by far the
true location. This bad performance is somewhat expected, since fitting one curve through one
single point is not very forceful indeed.

On the contrary Figure B.4 shows that using the first two Na and K experimental data points,
at t1

c = 0.083 h and t2
c = 0.42 h gives results as good if not better than the case where [K] and

[Na] were available on the same grid as the potential in Figure B.2.
This result seems to indicate that our weighting coefficients αE , αNa and αK play their role of

taking into account the sparsity of the experimental values of concentrations. Also compared to
the results in Figure B.1 the results are better: in the ideal case in the left panel, the minimum
area in dark blue is sharper. In the right panel, where the K and Cl permeabilities are off by
1 %, the minimum of Jc remains almost at the true location.
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Figure B.4. Level of Jc(a) against MNa and RNa for experimental data obtained
by simulating (2.6) with parameter values in Table 3.1. The minima of J is
denoted by a white cross +, the true position by a red ×. In left panel MK, RK,
MCl, RCl are kept equal to the values in Table 4.2. In right panel MK, RK are
set 1 % higher, and MCl, RCl 1 % lower than the values in Table 4.2. In (B.3)
N = 896, tN = 0.294 h, and two concentrations are used to match with [Na] and
[K]: Nc = 2 and tc

1 = 0.083 h, tc
2 = 0.416 h.

Appendix C. Gradient of the objective function

We recall the basic method to study the dependance of a generic ODE system
dX(t; a)

dt
= F (t, X(t; a); a)

X(0; a) = X0

with respect to some parameters a ∈ Rp appearing in the expression of the right hand side
F : R × Rm → Rm. We denote by X(t; a) the solution of the Cauchy problem for a given set of
parameters. In the case where the initial condition X0 ∈ Rm does not depend on the parameters
a, the gradient of each component Xk, for k = 1, . . . , m with respect to a, is solution of the ODE
system

d∇aXk(t; a)
dt

= ∇aFk(t, X(t; a); a) +
m∑

j=1

∂Fk(t, X(t; a); a)
∂xj

∇aXj(t; a),

∇aXk(0; a) = 0Rp .

Suppose that we want to minimize a fit function

J(a) =
m∑

k=1
γk

Nk∑
n=0

(Xk(tk
n; a) − Xdata

k,n )2, (C.1)

with respect to a (note that the time sampling may vary according to the component). The
gradient

∇J(a) = 2
m∑

k=1
γk

Nk∑
n=0

(Xk(tk
n; a) − Xdata

k,n )∇aXk(tk
n; a),

will be required by the most efficient algorithms. It can be computed along with X(t; a) by
solving the system

dY (t; a)
dt

= G(t, Y (t; a); a),

Y (0; a) = Y 0,
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where

• Y : R → Rm×(p+1) with, for k = 1, . . . , m,

◦ Yk+m(k−1)(t) = Xk(t; a)
◦ Yk+1+m(k−1),...,k(m+1)(t) = ∇aXk(t; a).

• Y 0 ∈ Rm×(p+1) with, for k = 1, . . . , m,

◦ Y 0
k+m(k−1) = X0

k

◦ Yk+1+m(k−1),...,k(m+1)(t) = 0Rp .

• G : R × Rm(p+1) → Rm(p+1) with, for k = 1, . . . , m,

◦ Gk+m(k−1)(t, y) = Fk(t, (yi+m(i−1))i=1,...,m; a)
◦ Gk+1+m(k−1),...,k(m+1)(t, y) = ∇aFk(t, (yi+m(i−1))i=1,...,m; a)

+
∑m

j=1
∂Fk(t,(yi+m(i−1))i=1,...,m;a)

∂xj
(yi)i=j+1+m(j−1),...,j(m+1).

The expression of J and its gradient becomes

J(a) =
m∑

k=1
γk

Nk∑
n=0

yk+m(k−1)(tk
n; a) − Xdata

k,n )2,

∇J(a) = 2
m∑

k=1
γk

Nk∑
n=0

(yk+m(k−1)(tk
n; a) − Xdata

k,n )(yj)j=k+1+m(k−1),...,k(m+1)(tk
n; a).

In our case we have m = 4 and

F1(t, X) =
3∑

k=1
Pik

(t; a)(Eik
− X1)

F1+k(t, X) = −zk
Pik

(t; a)
Vw

FX1
RT

Xk+1 − [ik]ext exp(−F X1
RT )

1 − exp(−zk
F X1
RT )

, for k = 1, 2, 3

where

Pik
(t) = P ik

(
(Mik

− 1).e−Rik
.(t−tinj) + 1

)
. (C.2)

For the ion ordering i1 = Na, i2 = K, i3 = Cl we have therefore z = (1, 1, −1). We can rewrite the
permeabilities in terms of the parameters a ∈ R6, with aj = Mij and aj+3 = Rij , for j = 1, . . . , 3

Pik
(t) = P ik

(
(ak − 1).e−ak+3.(t−tinj) + 1

)
. (C.3)

The partial derivatives of the model function F with respect to the parameters are obtained
through the partial derivatives of the permeabilities

∂Pik
(t)

∂aj
= δk,jP ik

.e−Rik
.(t−tinj) − δk,j−3P ik

(Mik
− 1).(t − tinj)e−Rik

.(t−tinj).
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We have then
∂F1(t, X)

∂aj
= (δk,j + δk,j−3)∂Pik

(t)
∂aj

(Eik
− x1), for k = 1, 2, 3, and j = 1, . . . , 6

∂F1(t, X)
∂xi

= −δ1,i

3∑
k=1

Pik
(t; a) for i = 1, . . . , 4

and for k = 1, 2, 3, denoting yk
1 = −zkF x1

RT for simplicity,
∂F1+k(t, X)

∂aj
= (δk,j + δk,j−3) yk

1
Vw

∂Pik
(t)

∂aj

xk+1 − [ik]ext exp(yk
1 )

1 − exp(yk
1 )

for j = 1, . . . , 6

∂F1+k(t, X)
∂x1

= −Pik
(t; a)zkF

VwRT

(
xk+1 − [ik]ext exp(yk

1 )
1 − exp(yk

1 )
+ yk

1
exp(yk

1 )(xk+1 − [ik]ext)
(1 − exp(yk

1 ))2

)
∂F1+k(t, X)

∂xj+1
= δk,j

Pik
(t; a)yk

1
Vw(1 − exp(yk

1 ))
, for j = 1, 2, 3.

Appendix D. Sensitivity analysis

D.1. Level sets of LS fit on real data

Following the methodology in Appendix B, we study the sensitivity of the objective function
with respect to the 6 parameters, in the case of the fresh blood real dataset, where we can
compare the two objective functions, including or not the concentration control points.

We run three sets of numerical simulation. In each one we make vary two parameters Mi and
Ri, related to one of the three ions, while keeping the four other parameters constant, equal to
their optimal value for Jc(a) (see Table 4.2).

The two varying parameters Mi and Ri cover a square window [Mopt
i /10, 2Mopt

i ] ×
[Ropt

i /10, 2Ropt
i ].

The results of the three simulations are displayed in Figure D.1. We see that the range of
value for J(a) if at least one order of magnitude larger than for Jc(a). This is normal since the
fit is much better if only sought for the membrane potential, disregarding the concentrations.
The value of the best fit for JC(a) is also highly dependent on the weights αE ,αNa and αK of its
three additive factors.

The ratio of the maximum over the minimum values of the fit J(a) within the square range is
one order of magnitude lower for Na than for K or Cl. The influence of the Na permeability on
the fit with the potential alone is much lower than the influence of the K and Cl permeabilities.

This is no more the case for Jc(a). The influence of the Na permeability on the fit including
concentrations is comparable and even larger than the influence of the K and Cl permeabilities.

Table D.1. Extremal values of J(a) and Jc(a) when only two parameters Mi

and Ri are varying in [Mopt
i /10, 2Mopt

i ] × [Ropt
i /10, 2Ropt

i ].

ion min J max J max/min J min Jc max Jc max/min Jc

Na 0.00019 0.019 102 0.032 3.7 116
K 0.00032 0.60 1863 0.032 2.63 82
Cl 0.00032 0.67 2085 0.032 1.17 36
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Figure D.1. Level of J(a) (left panel) and Jc(a) (right panel) against Mi and
Ri for the fresh RBC (day 0). i is Na in the top panels, K in the middle ones and
Cl in the bottom ones. The parameters related to the two other ions are kept
equal to their values in Table 4.2. The minima of J is denoted by a magenta cross
+, the true position by a red ×.

D.2. Sobol indices of LS fit on day 0 data

In this section we quantify the influence of the parameters on the fit with the data by computing
Sobol indices, using the Python package SALib [7, 8]. As explained in [15] the idea is to consider
the ANOVA representation of the function of interest, here the fit function J(a) (or Jc(a) for
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that matter)

J(a) = J0 +
6∑

s=1

∑
i1<···<i6

Ji1...is(ai1 , . . . , ais)

= J0 +
6∑

i=1
Ji(ai) +

∑
i<j

Ji,j(ai, aj) + · · · + J1...6(a).

After rescaling the parameter domain to [0, 1]6 the different contributing terms can be estimated
by Monte Carlo approximations of the following integrals∫ 1

0
J(a)da = J0,

∫ 1

0
J(a)

∏
k ̸=i

dak = J0 + Ji(xi)

∫ 1

0
J(a)

∏
k ̸=i,j

dak = J0 + Ji(xi) + Jj(xj) + Ji,j(xi, xj)

and their variances

D =
∫ 1

0
J2(a)da − J2

0 , Di1...is =
∫ 1

0
Ji1...isdai1 . . . dais ,

which satisfy the relation

D =
6∑

s=1

∑
i1<···<is

Di1...is .

The ratios

S1
i = Di

D
, S2

i,j = Dij

D
, ST

i =
Di +

∑
j ̸=i Dij +

∑
j ̸=k ̸=i Dijk + . . .

D
,

are respectively the first order, second order and total Sobol indices. The first-order index can
be used to measure the fractional contribution of a single parameter to the output variance.
Second-order sensitivity indices are used to measure the fractional contribution of two parameter
interactions to the output variance. Total-order sensitivity indices take into account both the
main, second-order and higher-order effects.

Note that we are not studying the influence of the parameters on the model in general,
which would involve also the variation of this influence with time. Here we concentrate on the
parameters leading to best fit with the fresh RBC dataset and we therefore select a range of
values centered on the best fit parameters, of half width equal to 90 % of the nominal value in
each parameter direction. The Sobol indices are computed using a Monte Carlo sample of size
16384× (2d+2) ≈ 230000. The 95 % confidence interval are superimposed on the first order and
total indices, to make sure that the sample size is large enough.

Table D.2. Sobol indices of the six parameters for the fit function Jc(a) for the
fresh blood dataset.

Param S1
p S1

p +
∑

q ̸=p S2
p,q ST

p

MNa 0.0347 0.163 0.240
MK 0.101 0.295 0.351
MCl 0.00310 0.0181 0.0402
RNa 0.120 0.282 0.362
RK 0.148 0.447 0.518
RCl 0.0255 0.107 0.165
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On the top panel we see the Sobol indices relative to J(a), which measures the fit with the
membrane potential. The first moments, in yellow on the left panel, quantify the direct influence
of each of the 6 parameters on J(a). The second order index, on the right panel quantify the
influence of correlated parameters. Is it admitted that a parameter has a significant influence
if its Sobol index is larger than 0.05. Here only MK, RK and RCl satisfy this criterion, as
independent factors. In terms of correlations, the mutual influence of MK and RK and of RK
and RCl are significant. The bottom panels display the Sobol indices relative to Jc(a), which
measures the fit with the membrane potential and the concentration in Na and K control points.
Here all parameters seem important, with the exception of MCl whose total Sobol index barely
reaches 0.04. However if MK, RNa and RK directly influence Jc; with a 1st Sobol index higher
that 0.05. The mutual influences -measured by the second order index- of (MNa, RNa), (MK, RK)
and (RK, RCl) seem to be also important.
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Figure D.2. Sobol indices for the membrane potential fit (top panel) and for
the full dataset fit (bottom panel) for fresh blood (no storage). The left bar charts
display the first (yellow) and total (red) moments of each parameter. The right
panel charts display the 2nd order correlations

D.3. Influence of storage on Sobol indices of LS fit

A last set of numerical simulations is performed to check the observation made in Section 5
that Sodium ion transfers seem to be more important as the duration of storage increases.
This conclusion would be consistant with the data measurement at time 0 showing an increase
in sodium concentration and a decrease in potassium concentration as the storage duration
increases (see left panel of Figure 1.4).

Indeed the permeabilities identified by fitting the model with the membrane potential data
steadily increase with age (see first panel of Figure 5.3), but the sensitivity analysis on the fresh
blood results indicate that the sodium permeability influence on the fit with the membrane
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potential is negligible (See top panels of Figure D.2). It is therefore important to check whether
this influence remains negligible or not after the blood has been stored.

In Figures D.3 and D.4 we display the Sobol indices relative to J(a) for the 5 available dataset
of membrane potential after a storage of 0,1,2,3 and 6 days. The first moments, in yellow on the
left panel, quantify the direct influence of each of the 6 parameters on J(a). The total moment
in red on the left panel, quantify the total influence. The second order index, on the right panel
quantify the influence of correlated parameters.

Looking at the first red column in the left panels, we see that the total influence of MNa,
the amplitude parameter of the Sodium permeability, increases with the storage duration and
becomes comparable to the influences of MK and RK, which were the two predominant factors
for fresh blood.

We summarize these observations in Figure D.5. The influences of RNa, remains negligible,
while the influence of MNa increases along with the duration of storage.
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Figure D.3. Sobol indices for the membrane potential fit for a storage duration
of 0 and 1 days (from top to bottom). The left bar charts display the first (yellow)
and total (red) moments of each parameter. The right panel charts display the
2nd order correlations
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Figure D.4. Sobol indices for the membrane potential fit for a storage duration
of 2,3 and 6 days (from top to bottom). The left bar charts display the first (yel-
low) and total (red) moments of each parameter. The right panel charts display
the 2nd order correlations
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