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Abstract

We study a stochastic individual-based model of interacting plant and pollinator species through a bipar-
tite graph: each species is a node of the graph, an edge representing interactions between a pair of species.
The dynamics of the system depends on the between- and within-species interactions: pollination by insects
increases plant reproduction rate but has a cost which can increase plant death rate, depending on the densi-
ties of pollinators. Pollinators reproduction is increased by the resources harvested on plants. Each species is
characterized by a trait corresponding to its degree of generalism. This trait determines the structure of the
interaction graph and the quantities of resources exchanged between species. Our model includes in partic-
ular nested or modular networks. Deterministic approximations of the stochastic measure-valued process by
systems of ordinary differential equations or integro-differential equations are established and studied, when
the population is large or when the graph is dense and can be replaced with a graphon. The long-time behav-
iors of these limits are studied and central limit theorems are established to quantify the difference between
the discrete stochastic individual-based model and the deterministic approximations. Finally, studying the
continuous limits of the interaction network and the resulting PDEs, we show that nested plant-pollinator
communities are expected to collapse towards a coexistence between a single pair of species of plants and
pollinators.

Communities of interacting species, such as plants and pollinators, are systems characterized
by a large diversity of both their components (dozens of species are typically involved) and the
topology of their interaction networks [18]. How does the structure of the interaction networks
affect the dynamics of species and the stability of communities is a common and long-standing
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question in the ecological literature, e.g. [37, 39, 46]. Addressing this question is challenging
because the number of species in a community is large, and so is the number of possible edges.
Describing ecological networks from observations thus requires much effort, without being en-
sured that the inferred networks are representative of the studied communities (interactions can
indeed depend on space and time, but also on the abundances of the species which makes them
harder or not to observe). From a theoretical point of view, the study of the dynamics and
stability of communities most often relies either on the numerical analysis of large systems of
ordinary differential equations (ODEs), or on the study of the system near equilibrium in simpli-
fied communities (see e.g. [7, 14, 17, 25, 37, 39, 40, 44, 45, 46] and [2] for a review). This makes
the identification of general properties of ecological communities difficult. Overall, despite being
more than 50 years old, the question of correctly modelling ecological networks and communities
is still challenging. In this paper, we develop a new theoretical framework that could help in
addressing the previous questions, based on the fact that networks are hierarchically structured.
Interactions can indeed be considered at different scales: between individuals, between species or
at the level of the whole community [28]. At all scales however, several studies showed evidence
that the structure of the interaction networks is due to trait variations between or within species
such as size, symmetry, or time of activity, see e.g. [4, 15, 47, 49]. Starting from a stochastic
individual-based model, our goal is to provide simplifications of an ecological network by deriv-
ing the continuous limits of both the population sizes and the interaction graph structured by a
trait.

We focus on a particular ecological community: plant and pollinator species. The interactions
between individuals of each species are modelled by a bipartite random network. Interactions
affect the demographic rates of plant and pollinator individuals due to resource exchanges. On
the one hand, plants benefit from pollinator visits to increase their reproduction rate. On the
other hand, pollinators consume nectar, leaves, pollen, etc. which increases their reproduction
or survival rates. However, producing such resources is costly for plants, which can negatively
affect plant demographic rates, proportionally to pollinator densities [30, 31].

The interaction rates between plant and pollinator individuals are modelled by a random graph
where the species are the nodes of the graph. The existence of an edge between a plant and a
pollinator species indicates that individuals of these two species can interact. The resulting graph
is bipartite, since there is by definition no direct edges between insect species or between plant
species. The topology of the graph depends on a trait that represents the degree of generalism of
the species. Any pair of plant-pollinator species is connected independently from the other pairs
with a probability that depends on the traits of the two considered species. This simple model
generalizes Erdés—Rényi graphs that correspond to the case where the probability of connection
is the same for every pairs. Such a model can also generate particular structures such as nested
or modular graphs which are commonly found in ecological networks [28, 46].

In Section 1, we present the stochastic individual-based model, how the random interaction
graph is modelled, and how interactions affect demographic rates. Considering large populations
but with a fixed number of species, we show in Section 2 how the dynamics can be approxi-
mated by a system of ODEs (close to those commonly studied in the ecological literature). The
fluctuations between the approximated deterministic limit and the stochastic individual-based
process are established.

In Section 3, we derive a continuous approximation of the random graph when the numbers
of plant and pollinator species, say n and m, are also large. When the graph is dense (i.e. the
order of the number of edges is in O(n x m)), the complex random network can be replaced by a
continuous object, namely a graphon [13, 38]. In this case, the high-dimensional system of ODEs
can be replaced by two partial integro-differential equations: one for the plants and the other
for the pollinators. The latter equations fall into the broader class of kinetic equations, the most
well known and studied being the seminal Boltzmann and Vlasov equations. The use of such
mesoscopic scale, namely intermediate between a microscopic agent-based approach [24], and an

24



LARGE PLANT-POLLINATOR NETWORKS

averaged macroscopic one (over space) such as [42], is not a novelty for modelling competitive
interactions between species [9, 10, 19, 34], i.e. with a large but not infinite number of species
with trait structure. Indeed, such approach can be traced back as early as the book of [43] for the
mathematical modeling of evolutionary ecology. However, the kinetic treatment of large random
networks and their approximations by integro-differential equations is new to our knowledge.
Finally, in Section 4, the large-time behaviors of the ODE system or of the integro-differential
equations are studied and simulations are produced to explore several situations.

1. Stochastic individual-based model with species interactions

In this section, we introduce a stochastic individual-based model of plant and pollinator species.
In this model, the number of species and the number of individuals in each species are finite. Each
species is defined by a trait, for instance a morphological or functional trait, which determines
its degree of generalism. This trait shapes the interaction network: generalist plant species can
be visited by a large number of insect species and generalist pollinator species can visit a large
number of plant species. Even though several coevolved traits can be considered in the model
(e.g. orchids have flowers with a particular morphology, color, phenology, etc.), we will focus
on a single trait for the sake of simplicity. The dynamics is driven by the births and deaths of
individuals at random times that depend 1) on their positions in the plant-pollinator network,
determined by their species traits, 2) by the weights of the interactions between pairs of species,
and 3) by the population sizes of the species. The evolution of these interacting populations
is described by a stochastic differential equation (SDE) involving Poisson point measures and
an acceptance-rejection algorithm as in the Gillespie algorithm [26] (see [22, 24, 41] for the
mathematical formulation of the Gillespie algorithm by mean of SDEs in cases with interactions).

1.1. Description of the plant-pollinator community

We consider n and m plant and pollinator species, respectively. Each plant species is character-
ized by a trait « € [0, 1] and each pollinator species by a trait y € [0,1]. Fori € {1,...,n} = [1,n]
and j € {1,...,m} = [1,m], we respectively denote by z* and 3’ the traits of the plant species
1 and of the pollinator species j. These traits can represent for instance their degrees of general-
ism, i.e. their tendencies to interact with a large number of other species: a species is considered
as generalist when its trait (z° or 3/) is close to 1, or specialist when it is close to 0.

1.2. The plant-pollinator interaction network as a bipartite random graph

Plants and pollinators interact through a bipartite network where each species is a vertex, and
an interaction is an edge. We denote ¢ ~ j or j ~ i when individuals of the plant species ¢
can interact with individuals of the pollinator species j. There are no edges between two plant
or two pollinator species because the network only represents interactions between plants and
pollinators. Yet, when specifying the birth and death rates, competition kernels within and
between plant species, and within and between pollinator species, will be introduced in the
model.
The bipartite graph can be represented by an n x m adjacency matrix G™", with

nm __

1 if the plant species i can interact with the pollinator species j,
0 otherwise.

Regarding the structure of the network, we consider a stochastic bipartite graph that generalizes
the Erdés—Rényi random graph ([12, 20, 29]). The probability ¢(x’,3?) that there is an edge
i ~ j between the plant species ¢ and the pollinator species j is assumed to depend only on the
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traits 2° and y? of these two species. Different pairs are supposed to be connected independently,
the interaction graph is thus built such that:

Assumption 1. We assume that there exists a continuous function ¢ : [0,1]?> — [0,1], such that
¢ is Lipschitz continuous with respect to (w.r.t.) both variables and such that conditionally on
the traits (:L'i,yj)i,je[[lm]]x[[lm]], the random variables (G?fm)(i,j)e[[l,n]]x[[l,m]] are independent and
distributed as Bernoulli random variables with parameters (qS(xi,yj))(ivj)e[[lﬂ]]x[[l?m]].

L TR L s TR FN RN
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“ il Dermaptera ™ Lepidoptera
5 Q 5 Diptera. 8 Neuroptera
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FIGURE 1.1. (a): Nested (left) or modular (right) bipartite networks, from
Fontaine etal. [23]. (b): Pollination network for diurnal and nocturnal insect
species, from Knop et al. [36]

Example 1.1.

Case 1. If there exists ¢ € (0,1) such that for all i and j, ¢(x?,37) = ¢, then the stochastic
network is a bipartite Erd6s—Rényi graph. The degree distributions of nodes representing polli-
nators (resp. plants), i.e. the numbers of edges, do not depend on the species traits. Degrees are
thus independent binomial r.v. with parameters (m, ¢g) (resp. (n, ¢p)) and the total number of
edges follows a binomial distribution with parameters (nm, ¢o).

Case 2. The probability of an edge i ~ j between two species i and j depends on their degree
of generalism, for instance by assuming:

¢(z',y’) = a'y’. (1.1)
Under this assumption, two generalist species (2 and gy’ close to 1) have a higher probability to

be connected than two specialist species (2 and 37 close to 0). Nested graphs result from such
an assumption (see Figure 1.1 a-left for an illustration of nested graphs definition).

Case 3. 'When plant and pollinator species can be structured in groups, for instance because of
pollination syndrome or spatio-temporal segregation, the probability of an edge i ~ j ¢(z%, 7)) =
¢ry depends only on classes I 2 ¢ and J 2 j. The resulting random graph is a Stochastic
Block Model (SBM [32], see e.g. [1] for a review), often called modular networks in community
ecology (see Figure 1.1 (a)-right for an illustration of modular graphs definition). In this case,
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the function ¢ is not Lipschitz continuous, which is a technical assumption needed in Section 3
but it is possible to smooth it.

If species i and j interact, i.e. if G;"™ = 1, we denote by ¢;;™ the weight of the interaction
i ~ j. The quantity ¢;;™ describes the intensity and frequency of the relation between the
pollinator species j and the plant species 7. From the point of view of the plant, cfjm can be
interpreted as a measure of the pollination services received from the pollinators. From the point
of view of the pollinators, c?]m measures the quantity and quality of nutrients collected from the
plants.

Assumption 2. For alln,m € N2, conditionally on (x",y7); j e[t n]x[1,m] (™) (i.g)eltn] x[1m]
s assumed to be a sequence of independent non-negative r. v. such that

e the expected values only depend on the traits of the plants and pollinators through a
function ™ :[0,1)2 = R: for all i € [1,n],j € [1,m]:

Eqg y {czm} ="Mzt y), (1.2)
with B, ,[A] = E[A]|(2, yj)(i,j)e[[l,nﬂx[[l,m]]] for any bounded random variable A;

o there exists K. > 0 such that almost surely,

sup sup (m + n)c?]m < K.,
neN,meN (4,5)e[1,n] x[1,m] ’

in particular, this implies that

Vinaz :==  sup sup Varg ,((m + n)c?]m) < 00, (1.3)
neN,meN (4,5)e[1,n] x[1,m] ’

where Varg ,[A] = Var[A|(z, yj)(i7j)e[[17n]]x[[17m]]}.

Ezample 1.2. Depending on plants and pollinators’ traits considered, different functions ¢™™ be
considered:

e The intensity and frequency of the interaction can be independent of the species traits,

Le. ¢ = o, which would mean that given a plant and a pollinator species interact,

the effect of the interaction on their demographic rates is the same for all species;

e 2’ and y’ can represent the time of peak activity during a day or a season for plants
¢ and pollinators j, and cZ’jm a measure of the overlap of activities for both species;
Similarly, c%m can represent geographical proximity rather than time overlap between
both species;

e 2’ and 3/ can virtually represent some aspects of the morphology of plants’ flowers
and pollinators’ bodies and the r.v. c:-f’jm some morphological preferences. For instance,
n+m

assuming (z%,47) € [0,1]?, cZ’jm = would mean that pollinators and plants tend to

interact more when the traits are both large, while assuming c:-f;»m = % would mean
that they will interact more when the plant has a large trait value and the pollinator a

low trait value.

27



SYLVAIN BILLIARD, HELENE LEMAN, ET AL.

1.3. Stochastic dynamics of the plant-pollinator community

The dynamics of plant and pollinator populations within the community is ruled by random point
birth and death events. We assume that the size of the population of plants and pollinators is
scaled by a factor K > 0, called the carrying capacity in Ecology. This carrying capacity K
is a measure of the size of the system, in other words, it controls the total abundance of the
whole community that can be sustained by the environment. A continuous limit of the stochastic
dynamics will be obtained when the species abundances tend to infinity, in other words when
K — o0. ' ‘

Given the scaling factor K, we denote PtK’Z and Af(’J the sizes of the plant and pollinator
species 7 and j at time ¢. The plant and pollinator populations at time ¢ can be represented by
the following point measures:

K,n,m 1 - K,i K,n,m 1 = s
P, """ (dx) = — > PMoLu(d), A = Z (95, (1.4)
i=1 =1

The interactions between plants and pollinators are characterized by exchanges of
resources [31]. The quantities of resources gained by plants or pollinators R are modeled through
a “mass-action model”. At time ¢, in the population scaled by K, a single individual of the plant
species ¢ interacting with pollinator species j is supposed to gain a quantity of resources (here
the pollination service) proportional to the abundance of pollinators Af( 7 /K weighted by the
interaction efficiency ch’m, such that the total resource gained by a plant individual of species @
through the pollination interactions is

nm K,j
AKZ‘_Z Tig Tt A (1.5)
Jr~i
Similarly, for a given pollinator of the species j, the resources gained from the interactions
with the plant species at time ¢ in the population parameterized by K is assumed to be:
. C- .’mPK’i
RPKI — Z % (1.6)
inj

The dynamics of the community is supposed to be governed by the birth and death rates of the
plant and pollinator populations. We denote b” (R) and b4(R) the individual birth rate of plant
and pollinator species, respectively, each depending on the quantities of resources exchanged R”
or RA. Similarly, we denote d”(R) and d“(R) the individual death rates. Finally,

gP(R) :==bP(R) —dP(R) and g¢*(R):=0b4R)—d*(R), (1.7)

are the component of the growth rate due to the interactions between plants and pollinators.

The plants and pollinators dynamics are also assumed to be affected by logistic competition
among plants and among pollinators (within and between species competition). We suppose that
competition strength depends on the traits x and y. This can represent the fact that plants or
pollinators with similar traits tend to share similar ecological niche, or phenology, etc. A plant
with trait « € [0, 1] suffers an additional death rate term due to competition such that

k*Pf’n’m(x) = o k(x,:v')de(’"’m " —Zk: x,z) KZ, (1.8)

where k(x, 2") quantifies the competition pressure exerted by another plant of trait /. Similarly,
a pollinator with trait 3’ € [0,1] suffers an additional death rate due to competition with
pollinators of trait y given by

n,m nm 1 e
P AL )= [ VAT ) = D ()AL, (1.9
) ]:1
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where h(y,y’) quantifies the competition of individuals with trait ¢’ on individuals with trait y.
The following assumptions on the functions involved in the model will be needed, both for
modelling and mathematical purposes.

Assumption 3.

(i) The birth rates b and b* are assumed to be bounded on Rt by constants M¥ > 0 and
MA > 0 respectively. Moreover, all the rate functions b, b, d¥ and d* are assumed to
be locally Lipschitz continuous on R .

(ii) The competition kernels k and h are assumed to be Lipschitz continuous w.r.t. both
variables on [0, 1]?.

1.4. Stochastic differential equations

Following works by Méléard and co-authors [16, 24], it is possible to describe the evolution of
K,nm

the population measures (PF""™ Al )ter, defined in (1.4) by SDEs driven by Poisson point
measures. Let us first present these SDEs and then explain their heuristic meaning.

Definition 1.3. Suppose that Assumptions 1, 2 and 3 hold. Let Q%(ds, dk, df), Q5 (ds, dk, df),
(resp. Q4 (ds, dk,dd) and Q4 (ds, dk, df)) be Poisson point measures on Ry x F := Ry x [1,n] x
R4 (resp. Ry x F := Ry x [1,m] x Ry) with intensity measure ¢(ds,dk,df) = dsn(dk)df
where ds and df are Lebesgue measures on R; and where n(dk) is the counting measure on
N* = {1,2,...}. Consider initial conditions POK s and Ag 7’5 that are independent from the
Poisson point measures and from the Gi""’s and ¢;;""’s.

For i € [1,n] and j € [1,m], one has

. , t
Pl = pli g /0 /E Lyl (RALK’i)P%ng(ds,dk,dG)

t
X P
_/0 /Enzzkneg[dp(R?_,K,i)mpf_,n,m(ﬂ)]Pf_,iQD(ds,dk,de) (1.10)
Afd gl [* [ 1 N s Qb (ds, dk, d6)
t 0 0o Jr Jj=k QSbA(Rf’_K'J)Af_’] B 9 )
t
. A
_ /0 /F Uity [ (R0 e s o] ates QD (A5, d, dO). (1.11)

The above SDEs correspond to the mathematical formulation of the individual-based simula-
tions classically used in ecology and originated with Gillespie’s algorithm [26, 27]. The Poisson
point measures Qg and Qg (resp. QS and Qg) give the random times of possible birth (resp.
death) events. The indicators 1;—; or 1,_; in the integral ensure that the equations for pPK;i
or AKJ are indeed modified when the birth or death events affect the plant population i or
pollinator population j. The indicators in 6 correspond to an acceptance-rejection algorithm
so that the birth and death times occur with the correct rates. Note that in these SDEs, the
network is hidden in the definitions of the terms RA%% and RP7 (see (1.5) and (1.6)).

In order to approximate the individual-based model with ODEs or integro-differential equa-
tions, we can reformulate the SDEs (1.10) and (1.11) by expressing the processes P and AKX
as semi-martingales. The following proposition also states the existence and uniqueness of a
solution to (1.10)-(1.11). For a finite measure p and a positive measurable function f, we will
denote by (i, f) = [ f du the integral of f w.r.t. p.

Proposition 1.4. Consider here n, m and K fized. If Assumption 3 holds and if
E[(P5"™, 1)% + (AF™,1)?] < +oo,
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then the processes defined by (1.10) and (1.11) are well defined on Ry.. Moreover, for all T > 0,

E[mm(Pf”mmV+wA?“TnP < +o0. (1.12)

te[0,T]

For any f :[0,1] — R measurable test function, we have:

(PKnm

-----

CESSES!
<MK,i>t :/ (bP(RAKz) _|_dP(RAKz) +k*PKnm( ))PK,zdS (114)
0

A similar expression holds for the pollinator populations. For any f : [0,1] — R measurable test
function, we have:

Knm o i = i K,j j
(A1) = 53 A I0)
Knm PK,] Knmy, j K,j
(Al +/ mKZf o (RPKI) — b AKmm (7)) A ds
LA :
3" )M, (1.15)

where (M )je{l,..,m} are square integrable martingales with predictable quadratic variation
processes:

, ¢ , , . ,
<MK7]>t :/ (bA(Rf,KJ) + dA(Rf,KJ) 4 h*Af,mm(yJ))Af,J ds.
0

The proof follows from usual stochastic calculus with Poisson point processes (e.g. [33]), as
developed in [6, 24] for example. We however give a sketch of proof in Appendix A.1.

Thus the processes (P,{{’n’m)teR+ and (Af( ™) er, are well-defined in the set D(Rj,
Mp(]0,1])) of right-continuous left-limited (cadlag) processes with values in the set of finite
measures on [0,1]. The space Mp([0,1]) embedded with the weak topology is a Polish space
and the set of cadlag functions is embedded with the Skorokhod topology which makes it Polish
as well (e.g. [11, Thm. 6.8 and 12.2]).

2. Community dynamics limit when abundances are large but the number of
species is fixed
In this section, we consider the numbers of species n and m as fixed, while parameter K rescaling

the population sizes of plants and pollinators tends to +oo. In this section, since n and m are
fixed, these letters will be omitted to avoid cumbersomeness when there is no possible confusion.

30



LARGE PLANT-POLLINATOR NETWORKS

2.1. Law of large numbers

Proposition 2.1. We consider a sequence (PK’”’m,AK’”’m)KeN of processes as in Defini-
tion 1.8, with initial conditions such that

sup E[(Pé(’”’m, 1)% + (AS"™, ]1>3} < 400, (2.1)
KeN

and such that there exist (P}, ..., Py) and (A}, ... AZ"), independent from the GH™ s and ¢ii™ s,
satisfying the following convergences almost surely (a.s.) :

PK,@ ) AK,] .

li 0 =r li 0 = A).

K—lg‘fr}OO K ’ K—1>1:I|—100 K 0

Then, for all T > 0, the following convergence holds a.s.:
Ki || g3 _

li L Pl |- —-Al|} =0 2.2
Kgnoo?ggsydp{‘ K e t} ; (2.2)
where (P, ..., PM)iso0 and (A}, ... A™)>o are the unique solution of the system, which exists

on R,

P Y
Vie [1,n], i _ (gP(RtA’Z)—

S|
NE

k(l‘i7 xz)ﬁf) jjtz

dfj = (2.3)
viell W (ARP) — LS n A )
j € [1,m], dt g(t) mz (v, y") A 9
/=1

where, for all t € RT, éf’j =2inj cZ’mf’; and Rf’l =2 jmi cZ’mgi

Equations (2.3) is similar to a classical Lotka—Volterra system applied to mutualistic interac-
tions with competition. In our case, the species community is structured by the traits 2* of plants
and g’ of pollinators, and these traits determine the probability and strength of the interactions.
In addition, how interactions translate into births and deaths (the so-called numerical response
in ecological terms) is embedded in functions g and g* (demographic growth) and k and h
(competitive kernels). These functions can take any form (see Section 4 for some examples).
As a consequence, (2.3) can capture a large variety of ecological situations. In particular, many
ODE models published in the ecological literature are special cases of (2.3) (e.g. [8, 37, 46]) and
therefore can be seen as limits of stochastic individual-based models as defined in Section 1.

n,m

Notice that coefficients ¢;;  may be random coefficients as explained in the previous section.

However, these coeflicients remain constant over time.

Proof. Since the numbers n and m of species are supposed constant, working with the vector
processes (P AKJ )ie[Ln]je[1,m] With values in R (and not the measure-valued processes)
is here sufficient. Notice that under the assumption (2.1), we can obtain by computations similar
to the Step 1 of the proof of Proposition 1.4 that:

sup E| sup (PF"™ 1)% + (AF™™ 1)3| < 4o0. (2.4)
KeN  |t€[0,T]

The global existence and uniqueness of solution to (2.3) can be proved by classical results for
ODE:s: it follows from the local boundedness and Lipschitz property of the functions on the
right-hand side. Then this proposition is a direct application of Theorem 2.1 p. 456 in the book
by Ethier and Kurtz [21]. O

As a consequence:
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Corollary 2.2. Under the assumptions of Proposition 2.1, and for any T > 0, the sequence
of measure-valued processes (Pmm AKmm) v converges a.s. and uniformly in the Skorohod

space D([0, T), Mp([0,1])?) to the process (P™, A™) defined by:

no_ 1 m
Zchsﬁ(dm), A(dy) = Eg dy).

In this corollary, the space Mz([0,1])? can be embedded with the total variation topology
which is stronger than the weak topology: as n, m, the sequences (x!,...,2") and (y',...,y™)
remain unchanged, all the measures are absolutely continuous with respect to the same counting
measures ;' 0, or 37", 6,5. Also, the uniform convergence in the Skorohod space for any
T > 0 yields the convergence for the Skorohod topology on R (see Theorem 16.2 in [11]).

In what follows, we denote by ®Fmm = (@™ §Pmmyanq eAnm — (mm  pAnm)
the applications from R’ into R and R™ respectively such that (2.3) rewrites for all i € [1,n]
and j € [1,m]:

dPy
dt

nm o A dAvj nm o A
= oP"™(B, A)  and dechf’v (P, Ay). (2.5)

2.2. Central limit theorem

The individual-based model (mathematically described by the SDE of Definition 1.3) is very
commonly encountered in simulations in Biology, while the ODEs (2.3) are often used in the
modelling papers. The law of large number (Proposition 2.1) shows that both points of view
are related in the limit K — +4o0. In this section, we quantify the speed at which the conver-
gence holds by establishing a central limit theorem. This can be useful for instance to compute
confidence intervals or study the statistical properties of parameter estimators.

Let us introduce the fluctuation processes:

P/ K — P} AR K — Al
it = VK : . and gt =VEK : . (26
Pr"K — Py AfTK — A

Proposition 2.3. Consider the process of Definition 1.3, assume that the functions b, b¥,
d* and d¥ are of class C', and that the initial conditions (né(’P,né(’A)KZO converge in distribu-
tion towards a deterministic vector (i}, 7§') when K — 4o0o. Under the same assumptions as
Proposition 2.1, one has

K.P KA ~P ~A
("m0 K:> (M > 7 )e=o0,
—00

where the converge holds in distribution in the Skorohod space D(Ry, R™™) and where the
processes (1, 74) = (757, ﬁé’j)z‘e[[l,n}],jE[[Lm]] are solutions of the following SDEs driven by n+m
independent standard real-valued Brownian motions (W, WA7j)i6[[l,nﬂ,j6[[l,m]] s foralli € [1,n]
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and j € [1,m],
ot = ~Pl+/ ( RM) 4 dP(RM) + Z (2, 20) P‘f)PldWPZ
i
n (I)an m (I)an
/ Za (B, Ay) ~”+ O (B, A |ds,
0 Li=1 Oaf

(2.7)

t o SO 1 4 ~\ ~: ,

,":/'A,.] — 7"7’647] + / $ <bA (Rf’]) + dA (Rf’]) + E Z h(y]’yZ)Ag) A'?g dWSAv]
0 (=1

n aq)A,n,m m 6(I)Anm

J PS A ~PZ Ps As ~Al
ézz:l 8pe ( ) +Z 8 a7 ’ )ns

+ ds.

0

Notice that the limiting fluctuation process is an Ornstein-Uhlenbeck process that is centered.
Systems of SDEs have already been introduced in the literature to describe the evolution of
communities, but they are to our knowledge of a different nature. In (2.7) the noise relates to
the fluctuation of the stochastic individual-based model around its deterministic limit (2.5) for
K — +o00. In other works, such as in [14] for instance, the white noise corresponds to a diffusive
limit obtained when considering a different longer time-scale, as in the Donsker theorem (see

g. [16, §4.2]): the random noise comes from the rapid successions of birth and death events in
this accelerated time-scale. In other papers, following the steps of May [39], [3, 25]introduce a
system of equations, coupled via a smooth random vector field, which describes the approximated
dynamical system around an equilibrium state: in this case, the noise models the complexity
and nonlinearity of interactions.

Proof of Proposition 2.3. Tt is a direct application of Theorem 2.3 from Chapter 11 of [21]. The

proof can also be carried from the semi-martingale expressions of PtKZ and Af(’j (1.13)—(1.15)

and (2.5). To understand (2.7), consider for example the ith component ntK B of ntK P The
other terms can be treated similarly. We sketch here this alternative proof:
. PKZ P
K,Pi _  K,P; Dl i
= k PP —
ALK PK ‘
+ \F/ "= 7 Z i mAT| P ds
Jevi Jei
K,Pi "okpebs K’Z P M
=1 + - Zkaj x)/ ne e i (2.8)
Z 1

of (g

)”W( g ) g3

57

where M is the martingale appearing in (1.13) with quadratic variation (1.14). Because the
birth and death rates are assumed to be of class C', so is g*’ and a Taylor expansion can be used

33



SYLVAIN BILLIARD, HELENE LEMAN, ET AL.

for the last term:

Zc = Zc"mAJ

Jrvi Jrvi

Zc"mAJ X chm\/»<—ﬂg> + ek

Jrvi J~

ch ™AL x Zczmnf A 4ek, (2.9)

i i
where ek is a remainder term. From (2.8) and (2.9), we recognize that:

Pnm Pn,m
K,Pi _ K,Pi 8(5 aq’
0

Mt =T

|3 S A+ 3 T

(Ps,ﬁs)ﬁ;“’e] ds + k.
/=1

Using the Aldous-Rebolledo criterion (e.g. [35]) it is posable to prove that the distributions
of the processes (n°F, n4) ¢ form a tight family with a unique limiting value that solves the

SDEs (2.7). 0

3. Continuous limits when abundances and the number of species are large

We now consider that the numbers of plant and pollinator species in the network tend to infinity.
Taking the limit n,m — 400, we obtain equations describing the evolution of a population
consisting in a continuum of species.

Let the traits of plants and pollinators be chosen according to i.i.d. random variables with
cumulative distribution functions Fp and F4 respectively. To order species according to their
respective traits, we proceed as follows: let (%;);>1 and (v;);>1 be two sequences of i.i.d. random
variables with uniform distribution in [0, 1]; for any n,m € N2, let (um)ie[[l’n]] be the ordered
n'h first values of (u;);>1 and (v7™) jeq1,m] be the ordered mth first values of (v,);>1, then for
any i € [1,n] and j € [1,m],

" = Fpt(ub") and ym = Ft(efm).
The indices n and m will be dropped when no confusion is possible.

Recall that the plant-pollinator network is defined by its adjacency matrix (G7%"™) i j)e[1,n] x[1,m]
and the weights c%’m of the interaction i ~ j whenever G%’m = 1. The random variables G?Jm
are supposed to satisfy Assumption 1 for all n and m € N: the entries of the adjacency matrix

are here independent Bernoulli r.v. with parameters ¢(z¢,y7) for the term (i, j) € [1,n] x [1,m].
For the harvesting coefficients c?j’m, the following assumption is made:

Assumption 4. We assume that there exists for any n,m € N? a continuous function ¢™™
satisfying the condition (1.2) of Assumption 2. Additionally, we assume that there exists a Lip-
schitz continuous function ¢ : [0,1]2 — R to which the sequences of functions nc™™(-,-) and
me™™ (-, ) converge uniformly, in L>([0,1]?), when n and m tend to +oo.

The idea in this assumption is that the function ¢(-,-) is a “harvesting function” underlying
the matrix (CZ’m)ie[[l,n]],je[[l,m]] of harvesting coefficients. These assumptions are satisfied by
Examples 1.2.

Notice also that Assumption 4 implies that n and m grow to infinity with a similar speed. To
state this idea in specific terms, we assume that there exists a sequence (o, ),>1 such that

m=ay,n and lim o, =1 (3.1)
n—oo

In what follows, we write n — co, m — oo or n, m — oo indistinctly.
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Proposition 3.1. Let us assume Assumptions 1, 3 and 4 hold and that there exist deterministic
continuous bounded densities py and ag such that the followz'ng weak convergences hold:

lim ZPO i = Po(2)de, lim ZA 5yg =ao(y)dy a.s. (3.2)

n—+oo N m——+oo m
We also assume that there is a constant C > 0 such that a.s.,

sup((Pg™, 1) + (Ag™, 1)) < C. (3.3)

Then, for any T > 0, and for n,m — +00, the sequence of measure-valued processes

(P} (dw), Ay (dy )t>0 ( ZP’ 2t Zﬁ{dyj) , mym>1
j=t >0

converges in lawin C([0,T], M ([0,1])?) to a deterministic process (P, A) in C([0,T], M£([0,1])?),
such that:

(i) for allt >0, Py and Ay admit densities p, and a; with respect to the Lebesque measure
on [0,1],

(ii) (P, A) is the unique solution, for f € C([0,1],R), of

/01 x)dPy(x / f(@)py(x

[ s :gP ([ eyt pyatody) kx| puGorte ds,

/Olf VA (y /f ao(y)dy

+/0 /0 fy) :9A</01 C(x,y)<b(:c,y)ps(x)dx) —h*as(y):as(y)dyd&

where kx v denotes the convolution product and ¢ was introduced in Assumption 1.

(3.4)

In all this statement, the space M%([0,1]) is endowed with its weak topology.

The proof of this Proposition is given in Appendix A.2. Notice that assuming (3.3) is not very
restrictive in our biological context, since by (3.2), (Pi"™, 1) (resp. (Af™,1)) converges a.s. to
lPoll1 (resp. ||@o||1) which is finite. This just ensures that the constant C' in (3.3) is not a r.v.

Equation (3.4) is analogous to the ODE system given in Equation (2.3). However, here species
are not considered as discrete but they are continuously distributed along a continuous trait.
Modelling the dynamics of a plant-pollinator community with the PDEs given in Equation (3.4)
is thus a functional rather than a species representation of the same system. The connections
are modelled in (3.4) by ¢. This function ¢ : [0,1]? + [0,1] is a graphon (see [38]): it can
be understood (in this case) as a graph on the node sets [0, 1] for the plants and [0, 1] for the
pollinators, where ¢(x,y) describes the density of connections between plants x and pollinators
y. The term c¢ reflects both the topology (¢) and the intensity (c) of plant-pollinator interactions
throughout the community depending on the trait values x and y involved.

Remark 3.2. Note that one can formally write a strong form of (3.4). This leads to the following
system of integral equations on the densities p, and a;:

o) = [o" ([ elep)oten)atudy) - k)|t

(o) = [0 [ ce.ppote.ppe)ie) - b aut) o),

with initial conditions p, and @g.

(3.5)
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4. Study of the limiting dynamical systems

Let us now study the behaviour of the limiting dynamical systems that have been obtained: the
ODE system (2.3) when K — 400, and the kinetic PDEs (3.4) when additionally n, m — +oc.
4.1. Stationary states of the ODE system (2.3)

In this section, we give some results about the dynamics of solutions to Systems (2.3), for
general forms of g” and g“. Notice that any stationary points (PL,... P2, AL ... A™) of (2.3)
are solutions to the following system:

k(' 2% PL,

\E

SEES

Vie[l,n], P.L=0or 9P<ZCZ’me€;o> =

i /=1

(4.1)
Vjel[t,m], AL, =0or gA<ZcZ’m]50io> = h(y',y") AL

invg

3=
IM:

The community with no individuals is an obvious stationary point called the null equilibrium
in the rest of the paper:

P =0forallie{l,...,n} and Al =0forallje{l,...,m},

is a stationary state of (2.3). The local stability of this stationary state depends only on the
sign of g”'(0) and g4(0).

Remark 4.1. According to the expression of the non-trivial equilibria, a plant-pollinator com-
munity can exist, i.e. PL > 0 and AJ > 0, as soon as the interactions between plants and
pollinators translate into positive growth rate for both plants and pollinators. Despite that this
condition is little restrictive, a non-trivial equilibrium is possible only if trajectories have to
converge to it, (i.e. a non-trivial equilibrium has to be stable). The stability of an equilibrium
can be more tricky to study and obtain in general.

Lemma 4.2.
o If g¥(0) v g(0) < 0, the null equilibrium is locally stable.
e If g*(0) vV g2(0) > 0, the null equilibrium is locally unstable.
Proof. From the Hartman—Grobman theorem, we know that local stability is given by the signs

of the Jacobian matrix eigenvalues. The Jacobian matrix around the null equilibrium can be
directly computed:

g”(0) 0 0 0 0
0 gP(0) o 0 0
0 0 ... 0 g¢g%0) 0
0 0 ... 0 0 g0
whose eigenvalues are g©(0) with multiplicity n and g(0) with multiplicity m. This ends the
proof. O

4.2. Study of a plant-pollinator interaction with a trade-off for plants

As explained in Remark 4.1, more precise functional forms for the birth and death rates are
needed to carry out further computation.
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In this Section, we give results for the following particular forms of the individual growth rate
functions:

apRA
g"(RY) = b (R*) — d"(R") = m — (dp +6pRY),
(4.2)
A/ pP A(pP A/ pP asR”
R”) = b*(R") — d(R") = —"——=5 —da,
g7 (RT) =b(RT) —d(RT) = 5= pp —da

where R4 and R” are the total resources collected respectively by plants and pollinators (Egs.
(1.5) and (1.6)). The parameters ap, aa, Bp, Ba, VP, YA, da, dp and Jp are assumed positive.
Note that according to Lemma 4.2, the null equilibrium is stable in this particular case.

On the right-hand side of Equation (4.2), the death rate is an increasing function of the
resources exchanged for plants R4. This reflects an interaction trade-off for the plant, i.e. it is
supposed that there is a cost for interacting with pollinators due to nectar production, leaves
consumption, etc. Graphical representations of g and ¢“ are given in Figure 4.1. The form

9a(r) gp(r)

¢ r — ) "
: / C“ “ \
|

| —dp

—dy

FIGURE 4.1. Graphical representation of g4 and gp

given here to the growth rates (or numerical responses) g* and g can be found in [30]. It
assumes that there is no competition between plants for collecting resources from pollinators,
and that there is no competition between pollinators for collecting resources from plants.

We state an additional assumption on the parameters of both functions to avoid the case
where one growth rate is never positive.

Assumption 5. Assume that there exist r¥ > 0 and r* > 0 such that
gP ()Y >0 and ¢*(r?) > 0.

4.2.1. Casen=m=1

Let us first consider the particular case of a single plant species interacting with a single pollinator
species. In other words, we consider the system (2.3) with n = m = 1 and omit the indices and
exponents i = 1 and j = 1 for the sake of simplicity (so that ]5t1 becomes P, and chl becomes ¢ for
instance). We also assume that the two species interact, i.e. G113 = 1. Otherwise, computations
are trivial: the community goes to extinction as only death events occur. We have then:

dP,

7'5 = (gP (CAt> — kpt>Pt

dﬁ (4.3)
t [ A _

dar (9 (Cpt) hAt) Ay
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(see [31] for a similar ODE model in the ecology literature).

As discussed in Lemma 4.2, the null equilibrium is a locally stable equilibrium of the sys-
tem (4.3). Let us search for positive equilibrium. To help the study, we may draw some phase
plan of the system. (see Figure 4.2).

00 05 10 15 0.0 05 10 15

FIGURE 4.2. Phase plan and nullclines of the system of ODE (4.3): nullclines
for the pollinators dynamics in blue; nullclines for the plants dynamics in cyan.
For the plots, the parameters are aq = 25, ap =9, B4 =PBp =74 =9p =1
and ép = 3, and some various d4 and dp. Right: d4 = 2 and dp = 1, the system
has 3 stationary states: the null equilibrium, 1 stable positive equilibrium and 1
unstable positive equilibrium. Left: d4 = 3 and dp = 1.2, the unique equilibrium
of the system is the null equilibrium.

Precisely, we prove the following lemma that gives the number of equilibria and their stability.

Lemma 4.3. In addition to the null-equilibrium, System (4.3) has 0, 1 or 2 equilibria, depending
on the values of the parameters.

Precisely, denote by Cy and C’J the two zeros of g*. System (4.3) has 2 positive equilibrium
if and only if

max f(z) > 0.
a:G(CO_/c,CJ'/c)

In this case, the equilibria are (P, Ay) and (P, AL) with Ay, < AL and they are the two
positive solutions to

Py = %QP(CAOO)
o (4.4)
A = 30" (§97(eA) ). and eA € (G, €.

(PL, AZ) is an unstable positive equilibrium and (P%, AL) is a stable positive equilibrium.

To conclude on the dynamics of the trajectories of System (4.3), we performed simulations.
In summary, it appeared that, depending on the parameters values, either all trajectories are
attracted by the null equilibrium (Figure 4.2(left)), or trajectories converge to 0 or some positive
equilibrium, depending on the initial conditions (Figure 4.2(right)). We never observed cycles.
Moreover, the competitive terms ensure that trajectories remain bounded.

Proof of Lemma 4.3. Any stationary point (Pso, Axo) is solution to
gP(cAoo) =kP or P,o=0

4.5
g (cPx) = hAs or  An =0. (45)
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Recall that either both or no coordinates are null. In view of (4.5), the existence of a positive
equilibrium requires at least that sup,cg+ g7 (x) > 0 and SUpy e+ g*(y) > 0. This is true under

Assumption 5. Recall that C; and Cg are the two zeros of g©. From (4.5), we deduce that, if
there exists a positive stationary state, it satisfies System (4.4).

- ot
It remains to find the number of zeros of f(x) = %gA(%gP(cx)) — 2z on <CC°, CO) Since

C

g (c/k x ) and g¥(cx -) are concave functions with g* non-decreasing, their composition is also
concave and so is f. Since f(Ci/c) = —da/h — C5/c < 0, it admits

e 2 zeros if MaX e (o /.0 /o) f(z) > 0, and System (4.5) has 2 positive equilibria,
e 1 zero if MAX e (o fe,0F /o) f(z) =0, and System (4.5) has 1 positive equilibrium,

e 10 zero otherwise, and System (4.5) has no positive equilibrium.

Finally, in the case of 2 positive equilibria, which will be denoted by (P, Ay) and (P, AL)
with Ay < AL, the Jacobian matrix can be computed in order to study their stability (see the
Hartman—Grobman theorem):

e —kPE  ePE(PY(eAZ)
Az (94) (ePx) —hAZ '
The trace is negative, thus the stability of the stationary states depend on the sign of the
determinant.

det(J¥) = PEAL (hk — (9" (cAZ)(9%) (cPE)) = ~PEAL R (AZ),

and its sign depends only on the sign of f/(AL). According to the previous study of the function
f, we deduce that det(J") is negative, and det(J~) is positive. In other words, System (4.5)
admits 1 stable positive equilibrium and 1 unstable positive equilibrium.

In the case when System (4.5) admits a unique positive equilibrium, the same study implies
that this equilibrium is a non-hyperbolic equilibrium. O

4.2.2. Behaviour of the kinetic equations (3.4)

Recall that we are still working with the growth rates defined in (4.2).
The stationary solutions of (3.4) are couples of measures P° (dz) and A (dy) in Mp([0,1])
such that, for any positive, bounded and continuous function f on [0, 1]:

0= [ 1@ " ([ vle.n) A @) -~ kx P )| P() (4.6)
0= [ 1o ([ v 0P - 7] 7 @) (4.7)
e Y(w,y) = c(x,y)o(x,y). (4.8)

The null measures constitute a trivial solution to (4.6)—(4.7), which is stable in our particular
case (4.2). Let us discuss non-zero solutions.

Proposition 4.4. Assume that
e the competitive kernels k and h are constant functions;

e for all xo,yo € [0,1], y — ¥(xo,y) and x — Y(x,yp) are increasing and continuous
functions;
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then, System (3.4) does not admit any non-null stationary state with densities w.r.t. Lebesque
measure.

Moreover, any non-null stationary state in L'([0,1]?) is a couple of measures (P~ ,A”)
such that

poo :ﬁ (5— _i_p (5,
dao,py GRi,ﬁQ € Ry, 71, To, 7y € [0, 1], {m 71 z1 20z,
i (4.9)
it { P @o(@1,90)) = 9" (@0v(x2,5)) = k(py + )
9 (B1 (1. o) + ot (T2, o)) = haao
All these stationary states are unstable, except the state
Poo — HlaX;li-;—gP 6900
P (4.10)
oo  argmaxp+ ¢
AT =—=2—"=7 §
¥(z0, 1)
if xg, solution to
A [ MaXp+ gP P
g T@b(xo, 1) |¢(zo,1) =h- argmaxg., (4.11)

exists and is unique.

Finally, assuming that, for all initial conditions with positive densities w.r.t. Lebesgue mea-
sure, the quantities fol U(x, - )p,(z)de, folﬁt(m)d:n, fol V(- y)a(y)dy and fol at(y)dy converge
when t grow to infinity, then the trajectory converges to equilibrium (4.10).

In the proof of Proposition 4.4, we will see that the result is not restricted to the specified
forms of g and g given in (4.2). The proposition is still true as soon as shapes (successions of
increases and decreases) of g’ and g are the same as the ones of the functions specified in (4.2).

We will also see that in general, System (3.4) has no stationary state with densities, all
stationary states will be composed of Dirac measures. Moreover, the maximal number of Dirac
measures found in such a stationary state corresponds to the maximal number of points that
can be found in the inverse image of a positive real number for the functions g and g. The
stability of these stationary states can then be deduced using the same kind of arguments as the
ones in the following proof.

Proposition 4.4 shows that the only possible stable equilibrium is composed of only one plant
species and one pollinator species. Simulations below will illustrate this Proposition. This result
shows that when the plant-pollinator network is nested and the competition among plants and
among pollinators is constant, then the plant-pollinator community collapses to a single plant-
pollinator species pair. At the stationary state, the value of the trait for the pollinators is 1, where
the probability of interactions with plant is maximized. The trait for plants is <1 (4.11), because
of the trade-offs for plants due to the cost of the interactions. This is in line with the numerical
analysis of a system of ODEs by [37]. Our results is a formal demonstration of this necessary
collapse. It is also more general since we show that it does not depend on the specific form of
g” and g#. This raises the question of whether it is possible, in this type of ecological model, to
maintain a stable coexistence of several plant and pollinator species in a single community by
modifying the structure of the interaction graph (i.e. with other assumptions for the function
1), or the structure of the competition graph (i.e. with non-constant competition functions k
and h).
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Proof. Any stationary state (P, A™) in L'([0,1]?) satisfies that

P</1 w(x,y)ﬁoo(dy)> = /1 kP> (dx'), for all € supp P~
0 0 (4.12)

1 1
A(/ 1/J(x,y)]300(dx)> = / hA™ (dy'), for all y € supp A
0 0

Since (P, A°) € L'([0,1]?), [; kP™(dz') and [ hA™(dy') are finite. Then, according to the
continuity and the variations of the functions (1 is increasing w.r.t. each variable, g4 is increasing
and g” is increasing then decreasing), we deduce (4.9).

Let us denote by S the set of stationary states given by (4.9) excluding equilibrium (4.10). Let
us prove that all states in S are unstable. To this aim, we develop an argument by contradiction,
assuming that it is not true and that there exists at least one stationary state (P>, A™) € S. We
deal with the case where T; < xy < T2, g, being any value in [0, 1]. Other cases, (2) Ty < 29 < Z1,
U € [0,1] or (3) T1 = T2 = x0, Yy < 1, can be treated similarly.

Let us consider an initial state that is close (in Wasserstein distance) to (P~, A”) and that
has positive densities w.r.t. Lebesgue measures. Thus, p; exists and is positive for all ¢ > 0 and
we can study log(p,(z)) for all t € Ry and all z € [0,1]:

d
dtlogpt )=g (/wxyat dy) /kpt

Under our assumption, S admits at least a stable state and since the initial state is close to this
set, we deduce that (p,,a;) will converge to some (P>, A®) € S, which is close to (P, A”) (if
not it), sufficiently close to have a similar form. Then for all = € [0, 1],

Los(m()) 2 9 (/wy )dy)/lkﬁ”
(/wﬂcy )dy>—g </¢x1, ()dy>

The latter quantity is positive as soon as x € (Z1,xzg), which contradicts the fact that p,(x)
converges to 0 for all x & {Z1,Z2}.

The last point of Proposition (4.4) can be obtained using the same argument, once the con-
vergences of the four quantities detailed in the statement are assumed. O

Let us illustrate numerically Proposition 4.4 (see Figure 4.3). To do so, we have discretized the
continuous model (3.5). Let N be a positive integer and let (p;(t));, resp. (a;(t)); be approxima-
tions of (p;(x;))s, resp. (a(y;));, at ; = i/N and y; = j/N, 0 < 4,5 < N. The solution of (3.5)
can be approximated using the rectangular rule by the following system of coupled ODZEs:

dp; g 1 X
i | P
w19\ N Z:Cijaj N > kijpj | pis

=0 =0
J . JN (4.13)

da- A 1 1

dt] — [g <N ;:0 Cz’jlh’) -~ ;:0 hi,jai] aj,

where the initial data has been defined as p;(0) = pg(xi), pi(0) = Dy(xs), a;(0) = ao(x;). We
recognize the ODE system (2.3) obtained when the numbers of plant and pollinator species are
finite with n =m = N.

We shall consider the case of growth functions (4.2). In order to fit the hypotheses of Propo-
sition 4.4 and ensure the convergence towards an explicit equilibrium of the dynamics, the
interaction matrix (c;;);; is non-decreasing in each index i and j, and the competition kernels
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FIGURE 4.3. Solutions to (4.13) at time 100 (blue), 500 (orange) and 1500
(green). The left panel represents the distribution of plant species and the right
panel the distribution of pollinator species. Parameters are oy = 3, ap = 25,
Ba=PBp=vp=1,74=03,dp=1,ds =3 and dp = 3, with N = 500 species
of plants and pollinators.

will be chosen constant. We consider the simple case

DG+
E 2N?2 ’

We represent in Figure 4.3 (in logarithmic scale) the convergence towards the equilibrium
state reached when no evolution occurs anymore on the discrete dynamics, for a random initial
datum supported in [0, 1]. We checked numerically the conclusion of Proposition 4.4: the system
converges towards an equilibrium which consists of a Dirac measure centered inside the domain
for the plants, and on the right border for the pollinators. The last remaining plant species is
moderately specialist (z ~ 0.6) whereas the remaining pollinator is genuinely generalist (y = 1).

5. Conclusion

Two of the main goals of Ecology are (i) to explain how emerged the size, composition and struc-
ture of communities, for example plant-pollinator communities, and (ii) predict the dynamics
and stability of a given community. Such questions involve different hierarchical scales, from
the individuals which effectively interact (the microscopic scale), to the species and the whole
community (the macroscopic scale).

Theoretical Ecology mostly addresses these questions by studying systems of ODEs where
each equation refers to a given species. This approach has several methodological and con-
ceptual drawbacks. First, the system is discretized and structured by species, which precludes
the possibility of within-species variability regarding the rate and intensity of interactions, in
particular between-species overlaps. Second, the interaction graphs underlying the system of
ODEs are most often arbitrarily given without specified mechanisms. Finally, due to the high-
dimensionality of the ODEs system, it is difficult to obtain general properties of communities.

Here, we modelled an individual-based plant-pollinator network, where interactions are struc-
tured by individuals traits. We found continuous limits of the microscopic system and finally
showed that it could be approximated by PDEs. We finally studied the dynamics, stationary
state and stability of these continuous limits. Our approach allows to address several limits
exposed before: the relationships between the individuals, species and community scales are
explicit; interactions variability within and between-species are taken into account; the interac-
tion graph is based on individuals’ traits; PDEs approximations allow an explicit and analytical
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study of the property of a community. We showed in particular that a nested plant-pollinator
network is expected to collapse, a phenomenon already observed by previous works, but to our
knowledge for the first time formally demonstrated under general conditions. Our approach can
thus provide a new and original theoretical framework for ecologists to address long-standing
questions.

One of the actual limit of our model is that interactions take place through a “mass-action
model”, in particular with the use of the resources (1.5)—(1.6) which are already at a macroscopic
scale. Returning to an event-based modelling for establishing these functional responses (e.g. [5])
and showing how interactions at the individual level would translate into an interaction graph
and into the dynamics of the whole community is an open question.

Code

The code for simulations is available here:

https://gitlab.com/thoma.rey/PlantPollinatorsNetwork/

Appendix A. Proofs

A.1. Bounds on the microscopic representation

Here, we give a sketch of proof of Proposition 1.4. The proof follows from usual stochastic
calculus with Poisson point processes, as developed in [24] for example.

Proof of Proposition 1.4. The proof is divided into several steps.

Step 1. Let us first prove some moment estimates, including (1.12). First, notice that the

process can be stochastically bounded by a process (f’f( o Af( ™) where only births occur at the
maximal birth rate, denoted by M¥ := sup,cg+ b7 (r):

(PE 1) — 1 & pli
t ’ - t
nk =

~ t 1 X
K.n _ K.n AP
< (P, 1) = (P, ,]1>+/0/EnK;]li:kllegMppf_,zQB(ds,dk,d9).

Since

E( sup <P§’",]l)) < 1+IE( sup <Pf’",]l>2> < 1+E( sup <f’§’",]l)2),

K K K
sgt/\TN sgt/\‘rN sgt/\‘rN

we only have to find a bound for the second moment of <15£(", 1).
For a constant N > 0, we introduce the stopping time

T —mf{t >0, (PKn 1) > N or <Af(’m,]l> > N}.
Using It6’s formula for jump processes (e.g. [33, Thm. 5.1 P.66]), we have:
B 1)

n 1 —

u<s—

n n. 1
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Since the right hand side is an increasing process, we can replace <f’tK ™ 1)2 in the left hand side
by SUD <7 i x (PEm 1)2. Then, taking the expectation gives:

IE( sup (ﬁfﬂ,nﬁ) <E((Py™"1)%) +E

K
S<ENTN

t/\’r]{,{ n S Ko
P 1
; - K sup( )+

MPPpEig
u<s 2K2> s S]

K t
< E((P, ’",1)2)+/0 Mr

1 -
(2+ ?)E (1 + sup (PEm ]l)2>] ds.
n

K
u<SATp

Using Gronwall’s lemma, we deduce

E( sup (155”,]1>2) < [E((PE™, 1)2) + 3MP] M7 < oo,

sgt/\‘rj{f
Since the bound does not depend on N, we make N grow to oo and obtain
E(Sup<f’§’n, ]1>2> < [E((PF, 1)2) + 3MP] M < oo,
s<t

Similarly,
E(sup(;&f’m,]l)2> < [E(AF™ 1)2) + 3MA] M < oo, (A.1)
s<t
Notice that the upper bounds that we obtain do not depend on K. Once these estimates
have been obtained, existence and uniqueness of a strong solution to the stochastic differential
equation is given by [33, Thm. IV.9.1].

Step 2. Let us now consider a measurable real function f on [0, 1]. Using It6’s formula for SDEs
with jumps (see e.g. [33, p. 66-67]) and (1.10) provides (1.13) in which:

t .. .
M / S Bkt i) @ (s ko) — | w(zng)pgwds

gt
- / LNkt pan (52 )it ] pics @ (5. k. )
- g~ S s— s—
+ / [P (3 RAK) — 4 PEn (1) PR (A.2)
Jevi

is a square integrable martingale with bracket given by (1.14). A similar computation can be
done for AK™ to obtain (1.15). O

A.2. Large number of species limit

Proof of Proposition 3.1. Recall that for n,m > 1, we have:

1 ~ 1 ~
| 1@dPpr@) = [ f@)aP )
0 0

—|—/Ot:lzn:f(xl)[ (;i an AJ) 7112”: k(x" w)Pﬁ P’ds
1 = =1 =1 (A.3)
| fwaay / Fy)dAL™ ()
+/0 ;Zf(yj)[gf‘gz e PZ)‘%Z y y)AK]Aﬂds
j=1 i=1 =
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where conditionally on (z° y4)le[[1 nljel,m)y Gij ~ Bern(¢(x%,y7)) and are independent r.v.,
and ¢;;" are independent r.v. satisfying Equations (1.2) and (1.3).

Step 1: Processes are bounded. Since g¥ and ¢# are bounded from above respectively by Mp
and M4 and since the competition terms for the pollinators are non-positive, choosing f =1 in
the previous equation (A.3), we find that a.s.,

PP™ 1) < (PP™ 1)eMPtand (AP 1) < (AQ™, 1)eMat, (A.4)

for all n and m. Notice that these upper-bounds hold whatever the values of G;; and ch By
Assumption (3.3), we can define a constant C(T') < +oo such that almost surely

sup((f’g’m, 1)eMPT 4 (AP™, 1>eMAT> < C(T). (A.5)

n,m

Thus, the processes (P} (dz), A} (dy))
is a compact set.

1€[0.7] take a.s. their values in (M<cp)([0, 1]))? which

Step 2: Relative compactness in C([0,T], M<c(ry([0,1])%). Following [11, Thm. 8.3] and proof
of Theorem 5.3 in [24], it is sufficient to prove that

(i) supmmeN((f’g’m, 1) 4 (Ap™, 1}) is bounded almost surely, and
(ii) for any continuous function f on [0, 1], and for any € > 0,

lim hmsup]P’( sup [(P™™, f) — (PP, f)] > 5) =0

=0 pmeN [t—s|<d

lim limsup P sup [(A7™, f) — (AP f)| >¢] =0.
6—=0 nmeN [t—s|<8

Point (i) corresponds to (3.3). Let us turn to point (ii). Recall the definition of Rf " in Proposi-
tion 2.1 and notice that Rf’z =1 o Ty me;” mG A Then,

B[R] < Z (T) < max [[mc™™||o C(T) < oo,

1
m " n,meN*

which is finite from Assumption 4. Thus, there exists C > 0 such that P(}NBA’i > C~’) is sufficiently
small. Then g” is bounded on [0, C] by some constant M (since it is a Lipschitz function). Thus,
on {RA" < O}, for any positive continuous function f on [0,1] and any 0 < s <t < T,

(B, £y = B )l < [+ KOO0

Same computations can be done for the sequence of processes (A"’m)meN*. And these are suffi-
cient to conclude point (ii).

Step 3: Density of the limiting values. Let us then prove that every limiting value of
(P™™, A™™)  denoted here by (P, A), is a process whose time marginals at ¢ > 0 admit den-
sities P, and @, with respect to the Lebesgue measure on [0,1]. To achieve this, we dominate
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the measures P""™(dz) and A" (dy) by measures with densities. For all positive continuous
function f on [0, 1], with arguments similar to these of (A.4), we prove that

(P, f) < (P, fleMrt = /01 f(@)(po(x)eMP)de, as.

A1) < Eoo )M = [ 1) o))y, s

which is sufficient to deduce the existence of densities with respect to Lebesgue measure.

Step 4: Equation satisfied by the limiting value. Let us fix ¢ > 0 and f a continuous positive
function on [0,1]. We define for all ¢ € [0, 1] the map t; on C([0,1], M<c(r)([0,1])?), endowed
with the uniform convergence, defined by

(Prf) — (Po. f) — Ji S F(@) 7 ((6) % As(a)) — kx Po(a)] dPs<x>ds)

wt(PﬂA) = ( _— A
(Arsf) = (Ro. ) = JL2 1) [0 ((06) # Po(e) — hox Ay(0)] dA(w)ds

The continuity of map v is straightforward from the equivalence between the weak convergence
on M2<C(T) ([0,1]) and the convergence of measures in the Kantorovich-Rubinstein distance (see

for example Theorem 6.9 of [48])

1
Wiatwo) =sup{ [ fla)d(v = (@) : 0.1 = 0.1] Lipschita , Lip(f) < 1},

since [0, 1] is a compact space. The function 9, is also bounded since all measures are bounded
by C(T).

Consider a weak limiting value (P, A) of (f’”m,A”m), and denote by (f’”m,;&”m) again
(with an abuse of notation) the subsequence converging to (P, A). Using the Skorokhod rep-
resentation theorem, we can assume that these processes are defined on the same probability
space and that the convergence is almost sure:

lim SUp(Wl (f’?’m, P:) +W (Ag’m, Kt)> =0, a.s. (A.6)

n,m—+00 <

Then, by the properties of 1/,
E[[[ge(®m A" L] B[P A (A7)
Our purpose is now to prove that for all ¢ € [0, 77,

lim E[\\wt(ﬁ"»m,xnvm)\\l} — 0. (A.8)

n,m—-+oo

This will ensure, in addition with (A.7), that ¥(P, A) = (0,0) a.s. In other words, the limiting
value satisfies Equation (3.4) a.s.
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By (A.3), (A.4) and (A.5) and denoting by L¥ (resp. L4) the Lipschitz constant of g%
(resp. g):

E|[lgo(P™, A"

=F Ot % z”: f(xz)ﬁ; (gP (; i Gz]mcf:’ymgi) — gP((C¢) * A?’m(xi)>>ds }
i=1 j=1
t1 & n,m 51 DN,m [, ]
+E /0 m]z::lf AJ( < ZGUnc P> ((cd))*Ps’ (y )))ds],
< [/ S 4 S e - o
i=1

ZGUncnsz (C¢)*an( )

c(r )LAIIflloo
+/0 ZE[

The two terms in (A.9) having similar expressions, we focus on the first one with the aim of
showing that uniformly for all ¢ € [0, 71,

1 ds. (A.9)

Z Gijme;; ™AL — (c¢) % A (2

lim E [
n,m—-+oo

The proof of (A.10) is itself divided into smaller steps. To this aim, let us set ¢ > 0 and show
that for n and m sufficiently large the term in the left hand side of (A.10) is smaller than e.
The difficulty is that (A7) are not independent from (Gyj) and (c7™), except at time ¢ = 0.

] = 0. (A.10)

Step 4.1: (A.10) is satisfied for t = 0. At time ¢ = 0, we have:

1 & . :
- i T2, mAJ A (gt
m E:: i TCq (co) x Ag™ (z) ]
<E e Em (G me, " —m ™ (2t ) ot J))AJ
>~ m iJ i.j Y )
i=1

(A.11)

By (A.5), the second term in the right hand side of (A.11) is upper bounded by
C(T)||¢loo|[mc™™ — ¢|| 0o, which converges to zero by Assumption 4.

Let us now consider the first term in the right hand side of (A.11). Since at ¢ = 0 the random
variables (Af)), (Gyj) and (czm) are independent, we obtain by Assumption 1, the assumptions
of Proposition 3.1 and (2) and by using Cauchy—Schwarz inequality that

1 o N
— Z(Gwmc —m "™ (2" ) o2ty ))Aé

E | Var!/? (Z A Umc”

J=1

i)y]’,Aij, Z e I]:l?n:l]7.7 e H17m]])] *
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Then, recalling (1.3) and the fact that Var(XY) = Var(X)E[Y?] + Var(Y)E[X]? for any inde-
pendent r.v. X and Y:

Jm

Thus, the expectation in the Lh.s of (A.11) can be made smaller than £/3 for n,m larger than
some Ny, Mj.
Along the proof of Step 4.1, the independence between the random network (G;;’s and ¢} m’s)

1/2
< O (ZVarx,y(Gijmcz;”)) < CD (V12 4 e o1 - $)IL2).

and the abundancies ((ﬁf)) and (P})) was a crucial ingredient, which does not hold any more for
t > 0. Hence the difficulty. We will first show that (A.8) holds on a small time intervals [0, ),
for some § > 0. For this, we will construct auxiliary processes (ﬁ, ]3) that do not depend on the
Gi;’s and c%’m’s. Then, for all i € [1,n],

Z G”mcn b <A] Ai)

Z Gijme;)] AT — (cp) « AP (o)

Z Gijm cn mA] — co* A?m(xl) + ‘cqb * (A?m - A?m) ()

(A.12)

The second term of (A.12) will be treated using the exact same computation as above and thus
it will be upper-bounded by £/3 as soon as n, m are greater than some threshold Ny, My and if
the auxiliary processes satisfy (A.5). Our aim is thus to find auxiliary processes such that the
latter is true and such that the first and third terms of (A.12) are small.

Then, we will extend the result by recursion to any ¢ € [0, 7.

Step 4.2: Construction of auxiliary processes I3i, AJ. For n,m given, and t > 0, let us define,

P} (dx) ZPt win  AP(dz) =" Al (A.13)
7=1

where for ¢ € [1,n] and j € [1,m], the initial state of the auxiliary processes is constructed
using a discretization of the limiting initial condition (ao(y)dy, po(z)dx):

A~ . x
PSzn/
't

Then for all t > 0, we construct the Pi’s and A’’s as the unique solutions of the following system

i+1 2it1

po(x)dr and Af) = m/ (y)dy with 2" = ym T =1, (A.14)

dézt —]3ti< (chp AP (2 ——Z z' P€>
=1

dAT P 1

dtt:fﬁ(gA(cqﬁ*PO’ (v’ Ez_: v,y AZ>

Notice that the processes (]33, t >0)and (/Ali, t > 0) depend on ¢, ¢ and on the sequences (x%);<y,

and (y7);j<m, but not on the G;;’s and the cZ.’m’s since their initial condition does not.
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Moreover, proceeding as in Step 1 (to obtain (A.5)), we can prove that for all ¢ € [0, T,
sup((P7"™, 1) + (A}, 1)) < O(T), a.s., (A.15)

n,m

hence the second term of (A.12) is smaller than /3, as soon as n,m > Ny, M.

Step 4.3: The third term of (A.12) is small. Notice that, under the assumptions on ¢ and ¢,
there exists Cp > 0 such that for all measures v and p, and for all = € [0, 1]

g (v = p)(2)] < CoWr (v, ).

Thus, to show this step, we will prove that Wi (A™, A"™) is small. To this aim, let f be
a Lipschitz function such that ||f|lc < 1 and such that its Lipschitz constant Lip(f) is also
bounded by 1, Lip(f) < 1. According to the equations satisfied by all the processes, for any
t>0,

(Apm — Apm, )| = |(Ag™ — Ap™ )]

t m . ~ . o~ . n ~ .
% > ) lAé (gA(ccb * Py (7)) — g? <711 > Giym C?j’mps’»
= '

g (co* Py (7)) (AL - AT) — ds

</
0

OO (max [ (B — By, co(- )| + K. guax P} - Bl ) +[(R2m — Az, |

1<j<m 1<i<n

Lo

m

m n,m A n,m 7 O(T - n,m A n,m l
Z|As’ _‘As7 7h(ya TZ‘AS’ _iAs7 7fh(7y)>|

j=1 =1
where K. corresponds to the bound defined in Assumption 2 and f(y) = f(y)g?(co * f’g’m(y))
is a Lipschitz continuous and bounded function such that Lip(f) is bounded independently from
n, m, according to the assumptions on ¢ and ¢. Using also that h is a Lipschitz function, we
finally deduce that there exists C; > 0 such that

ds,

(Ap™ AP ) < m(A"’m A““")

Taking the supremum in the left hand side w.r.t. f , and using Gronwall’s lemma, we deduce
that for all t > 0

Wh(A™, A < (wl(xgvm,ggvm) L O (PR P £ Gyt max Pl ﬁgy)eclt.

1<i<n,s<t
(A.16)
On the one hand, for the third term in the r.h.s., we have for any s € [0, T,

7,1 1 & i I\DL| Di
/( ( ZGUm AJ>—n;k(x,x)Pu)Pudu

<sC(T)(lg" ()|+LPC( K + [kl C(T)) = 5Cs,

where we set Cy := C(T)(|gF (0)| + LEC(T) K. + ||k||«C(T)), which is a constant independent
from n,m and s. On the other hand, f’gm and Agm converge weakly towards pg(z)dr and
ao(y)dy in probability. Moreover the sequence of r.v. Wi (Ay"™, ao(y)dy) and Wy (P, po(z)dz)

P Bl -
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are bounded in L?, and using the dominated convergence theorem, we deduce the convergences
of the expectations to 0. In addition with the definition of P{™ and A{"™ (see (A.14)), we can
find Ny, My > Ny, My such that for all n,m > Ny, M,

~ ~ €

In addition with (A.16), we deduce that there exists §; such that for all t < §1, all € [0, 1] and
all n,m > Nl,Ml,

Elco x (Ap™ — A7) (2)] < CoE[ Wy (Ap™, Ap™)]

(A.17)

(12 + 0151— + 00010252> G < % (A.18)

Using the same computations, we can find 50 < 471 such that for all § < dg and all n,m >
N1, M7, the same result holds for the processes P and P,

Step 4.4: The first term of (A.12) is small. We will use similar computations as in Step 4.3 to
reach this step. To this aim, we define for all t > 0

m

sAmm(f) = Sup{; > Gyme " f(y) (4 — A7) |f : [0,1] = [0,1] Lipschitz, Lip(f) < 1},

and a similar definition for ™™ (t). Let f be a Lipschitz function, bounded by 1. Then

Z Gijme] " )(Af) - ﬁ%)

t % il Gyme] 7" f(y)g* (co = Py™ () ) (A - A)
=

b3 Gl 2o ( 3Gy ) - (o055

j=1
1 &, Al — AJ
+mZAS( ZGz]mc ) (y y)<Ag_Ag))
=1

ds.

1 ) —~ ~
+— ZG”mc yj)A%m;h(yj,ye)(Aﬁ—Aﬁ)
=1

j 1

Following the same argument as in the previous step, using Gronwall’s lemma, we deduce that
RATM(E) < (AT (0) + ConPmT(0) + CrtC ) e, (A.19)

where C7 and C5 have been defined in the previous step.

It remains to prove that E[X4™™(0)] and E[SF™™(0)] converge to 0 with n and m. To this
aim, we follow the exact same computations as in Step 4.1 to deduce that for any Lipschitz
function f with || f|lec <1,

E|— Y Gymel]" f(y) A} — (cof) = Ap™ (a')
j=1

< T (VA2 + e ol 901 = D)) + e ™™ el
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with A7 = /Ié or j{) In addition with the weak convergence of Agm and Agm in probability
towards the same limits, and with similar computations for P, we deduce that there exists
NQ,MQ Z Nl,Ml such that

Anm € Pn,m €
s Tly < )Tl < .
B[S (0)] € e and E[P00)] < o

Using also (A.19), and remembering the definition of dy at the end of Step 4.2, we deduce that
for all n,m > Ny, My and all ¢t < dy,

Z Gigmey " (AJ Eg)

< CoE [EA’"’m(t)] < (A.20)

w\m

Moreover, the same result holds for the processes P™™ and P,

Step 4.5: Conclusion for t < §y. Combining Equations (A.12), (A.20), (A.18) and the end of
Step 4.2, we conclude that the limit in (A.10) is true uniformly for ¢ € [0, dp]. More precisely,
for all n,m > Na, Ms and all ¢t < dg,

] <e.

Finally, (A.8) is valid for all t < Jp and any limiting value satisfies the equation (3.4) for
t € [0, dp]. According to the uniqueness of the solution to this equation (see Step 5 below), we
deduce in particular that

lim (W1 (PL™, Ps,) + Wy (AL ,A50)> —0, in probability, (A.21)

n,m—-+o0o

Z Gwmcn mAJ (co) * A?m(xl)

with (P, A¢)iefo,s0) solution to (3.4). According to Step 3, P; and A; admit densities p, and a;
with respect to the Lebesgue measure.

Step 4.6: Recursion. We proceed now by recursion, by defining new auxiliary processes, for

n, m given, t > dg,
n

P (dx) =Y P's,i,  AP"(dz) = Z

with for i € [1,n] and j € [1,m], ]3§O and Ago are defined in a similar way as the beginning of
Step 4.2 using py, (z)dz and as, (y)dy instead of po(z)dz and ao(y)dy:

pitl " s+l
pj = n/ ps,(x)dz  and A =m as,(y)dy with 2"t = ¢™ T = 1. (A.22)
And for all t > 9y, we set
o :P< (co* As, (2 ﬁezzlk‘:v , T P>
dAl 1 K

Notice again that the processes (Pf) and (A7) do depend on ¢, ¢ and on the sequences (z%);<y,

and (y);j<m, but not on the G;;’s and the cii™’s. Thus, we can proceed as in Step 4.2, 4.3, 4.4

and 4.5 and find Ny, My > Na, My such that for all n,m > Ny, My and all ¢t € [0g, 2d0],

1 - n,m AnNm,; g
EZ ijme; Aj (co) * AJ"™(x")

] <e. (A.23)
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In other words, we can conclude similarly as in Step 4.5 for all ¢ € [0, 2dp]. With a direct recursive
argument, we finally be able to find No, Mo, with & = [T/dg], such that for all n,m > No,;, Mo,
and all ¢t € [0, 7], (A.23) holds.

This finally proves (A.10) and thus (A.8), which finishes the proof of Step 4.

Step 5: Uniqueness of the solution of (3.4). It remains to prove the uniqueness of the solution
to (3.4) to conclude. To this aim, let us take (P!, A1) and (P2, A?) two deterministic measures,
weak solutions to (3.4) and with identical initial conditions. Let us denote by p the Radon metric
between two measures v and p on Mp([0,1])%:

p(v,p) = sup{/o1 f(z)d(v — u)(az)‘f :[0,1] — [-1,1] Continuous}.

With straightforward computations, for any continuous function f : [0, 1] — [—1, 1], we can find
some finite constants C1, Cs, independent from ¢ and f, such that

®L-p7 )= | [ [ 5@)]o” o ALw) - kxPIaPLwS
//f Plegx Al()) — k » P2|dP2(x)ds
gcl/otp(Pg,P2 ds+/ / (" cqﬁ*(Al Az ‘ ‘k* (P! — P)(z )deg(x)ds

t
<G [ (o(PLP2) + (AL, AD)ds,
0

since x — f(x)(gF (cé x Al(x)) — kx PL(x)) are continuous bounded functions on [0, 1] for all
s € [0,7T], and k and c¢ are continuous bounded functions on [0, 1]2. Same computations can be
done with A and A2. Taking the supremum over all f, we find a constant C3 > 0 such that

t
p(PL.PP)+ p(AL AP) < Cy [ (p(PLP?) + p(AL AZ)ds.
0

We conclude with Gronwall inequality that p(P}, P?) + p(Af, A?) = 0 for all ¢ € [0,T]. Thus,
(P, A') and (P2%, A?) are identical, and the solution to (3.4) is unique. O
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