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Abstract

Euler and Lagrange proved the existence of five equilibrium points in the circular restricted three-body
problem. These equilibrium points are known as the Lagrange points (Euler points or libration points)
L1, . . . , L5. The existence of families of periodic and quasi-periodic orbits around these points is well known
(see [20, 21, 22, 23, 37]). Among them, halo orbits are 3-dimensional periodic orbits diffeomorphic to circles.
They are the first kind of the so-called Lissajous orbits. To be selfcontained, we first provide a survey on the
circular restricted three-body problem, recall the concepts of Lagrange point and of periodic or quasi-periodic
orbits, and recall the mathematical tools in order to show their existence. We then focus more precisely on
Lissajous orbits of the second kind, which are almost vertical and have the shape of an eight – we call them
eight-shaped Lissajous orbits. Their existence is also well known, and in the Earth-Moon system, we first
show how to compute numerically a family of such orbits, based on Linsdtedt Poincaré’s method combined
with a continuation method on the excursion parameter. Our original contribution is in the investigation
of their specific stability properties. In particular, using local Lyapunov exponents we produce numerical
evidences that their invariant manifolds share nice global stability properties, which make them of interest in
space mission design. More precisely, we show numerically that invariant manifolds of eight-shaped Lissajous
orbits keep in large time a structure of eight-shaped tubes. This property is compared with halo orbits, the
invariant manifolds of which do not share such global stability properties. Finally, we show that the invariant
manifolds of eight-shaped Lissajous orbits (viewed in the Earth-Moon system) can be used to visit almost
all the surface of the Moon.

1. Introduction

In the restricted three-body problem, the existence of periodic orbits around the Lagrange points
is very well known. Lyapunov orbits (planar orbits) are quite easy to compute and Richardson’s
work (see [37]) provides a third-order approximation of the classical halo orbits (3-dimensional
orbits isomorphic to ellipses) which allows to compute families of halo orbits using a shooting
method. Besides Lyapunov and halo orbits, there exist other types of periodic orbits around
the Lagrange points, in particular Lissajous orbits (see [20, 21, 22, 23, 24, 25]). Among those
periodic orbits, we focus here on the Lissajous periodic orbits of the second kind, that are almost
vertical and have the shape of an eight, and that we call eight-shaped Lissajous orbits. In the
first part of this article, we report on the circular restricted three-body problem, recall the main
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underlying mathematical issues of dynamical systems theory, and then explain how to compute
families of eight-shaped Lissajous orbits using a Newton’s method that we combine with a
continuation method on the excursion parameter. A third-order approximation of eight-shaped
Lissajous orbits is calculated using Linstedt Poincaré’s method, which is used as an initial guess.
The first part of this article (Sections 1 and 2) presents known results, and can be seen as a
survey whose goal is to provide a selfcontained article. Our original contribution is mainly in
the second part of the work (Section 3), in which stability properties of invariant manifolds of
eight-shaped Lissajous orbits are studied and compared to the ones of halo orbits. Using local
Lyapunov exponents, we prove that invariant manifolds of eight-shaped Lissajous orbits share
strong global stability properties which make them of great interest in mission design analysis.
Finally, to provide a relevant example of their applicability, we investigate the accessibility to
the Moon surface exploration using eight-shaped Lissajous manifolds.

1.1. Recalls on the circular restricted three-body problem

The circular restricted three-body problem concerns the movement of a body P in the gravita-
tional field of two masses m1 and m2, where the mass of P is negligible with respect to m1 and
m2. The masses m1 and m2 (with m1 ≥ m2) are called the primaries and are assumed to have
circular coplanar orbits with the same period around their center of mass. In this problem, the
influence of any other body is neglected. If the body P is further restricted to move in the plane
of the two primaries, the problem is then called planar circular restricted three-body problem.

Figure 1.1. The restricted three-body problem

In the solar system it happens that the circular restricted three-body problem provides a
good approximation for studying a large class of problems. In our application, the Earth-Moon
system shall be considered. Thus, the primaries are the Earth and the Moon and gravitational
forces exerted by any other planet or any other body are neglected.

In an inertial frame, the primaries positions and the equations of motion of P are time-
dependent. It is thus standard to derive the equations of motion of P in a rotating frame whose
rotation speed is equal to the rotation speed of the primaries around their center of mass, and
whose origin is in the orbital plane of the masses m1 and m2. In such a frame, the positions of
m1 and m2 are fixed. We consider the rotating frame with the x axis on the m1-m2 line and
with origin at the libration point under consideration. The masses m1 and m2 move in the xy
plane and the z axis is orthogonal to this plane. In addition, we use an adimensional unit system
with the following agreements: the distance between the Lagrange point under consideration
and the closer primary is equal to 1; the sum of the masses m1 and m2 is equal to 1; the angular
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velocity of the primaries is equal to 1. The body is submitted to the gravitational attraction
forces exerted by the primaries, the Coriolis force and the centrifugal force. Let

X = (x, y, z, ẋ, ẏ, ż)T = (x1, x2, x3, x4, x5, x6)T

denote the position and velocity vector of P in the rotating frame. The equations of motion are

ẍ− 2ẏ = ∂Φ
∂x

, ÿ + 2ẋ = ∂Φ
∂y

, z̈ = ∂Φ
∂z

(1.1)

where

Φ(x, y, z) = x2 + y2

2
+ 1− µ

r1
+ µ

r2
+ µ(1− µ)

2
,

r1 =
√

(x+ µ)2 + y2 + z2, r2 =
√

(x− 1 + µ)2 + y2 + z2,

and x = x1 and y = x2 are the abscisses of the primaries m1 and m2. Recall that these equations
have a trivial first integral, called Jacobi integral,

J = x2 + y2 + 21− µ
r1

+ 2 µ
r2

+ µ(1− µ))− (ẋ2 + ẏ2 + ż2),

related to the energy. Hence, if an energy level is fixed then the solutions live in a 5-dimensional
energy manifold. The study of that manifold determines the so-called Hill’s region of possible
motions (see e.g. [26]).

The Lagrange points are the equilibrium points of the circular restricted three-body problem.
Euler [13] and Lagrange [27] proved the existence of five equilibrium points: three collinear
points on the axis joining the center of the two primaries, generally noted L1, L2 and L3, and
two equilateral points noted L4 and L5 (see Figure 1.2).

Figure 1.2. Lagrange points

For a precise computation of the Lagrange points we refer the reader to [38] (see also [26]). We
recall that the collinear points are shown to be unstable (in every system), whereas L4 and L5 are
proved to be stable under some conditions (see [32]). Actually, it follows from a generalization of
a theorem of Lyapunov (due to Moser [34]) that, for a value of the Jacobi integral a bit less than
the one of the Lagrange points, the solutions of the nonlinear system have the same qualitative
behavior as the solutions of the linearized system, in the vicinity of the Lagrange points.
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Let us focus on the three collinear Lagrange points. It is standard to expand the nonlinear
terms 1

r1
and 1

r2
as series in Legendre polynomials, using the formula

1√
(x−A)2 + (y −B)2 + (z − C)2 = 1

D

+∞∑
n=0

(
ρ

D

)n
Pn

(
Ax+By + Cz

Dρ

)
,

where D2 = A2 +B2 + C2 and ρ = x2 + y2 + z2, and the equations of motion (1.1) around the
libration points Li, i = 1, 2, 3, can be written as

ẍ− 2ẏ − (1 + 2c2)x = ∂

∂x

∑
n≥3

cnρ
nPn

(
x

ρ

)
,

ÿ + 2ẋ+ (c2 − 1)x = ∂

∂y

∑
n≥3

cnρ
nPn

(
x

ρ

)
, (1.2)

z̈ + c2z = ∂

∂z

∑
n≥3

cnρ
nPn

(
x

ρ

)
,

where

cn = 1
γ

(n+1)
i

(
µ+ (1− µ)γ(n+1)

i

(1− γi)(n+1)

)
.

Here, γi denotes the distance between the Lagrange point Li and the second primary.
At the Lagrange points L1, L2, L3, the linearized system consists of the linear part of equations

(1.2), that is,

ẍ− 2ẏ − (1 + 2c2)x = 0,
ÿ + 2ẋ+ (c2 − 1)x = 0, (1.3)

z̈ + c2z = 0.

It is of the kind saddle×center×center, with eigenvalues (±λ,±iωp,±iωv), where

λ2 =
c2 − 2 +

√
9c2

2 − 8c2

2
, ω2

p =
2− c2 +

√
9c2

2 − 8c2

2
, ω2

v = c2.

Lyapunov-Poincaré’s Theorem implies the existence of a two-parameter family of periodic
trajectories around each point (see [32], or see for instance [6]). One can also see this two-
parameter family as two one-parameter families of periodic orbits. Halo orbits are periodic
orbits around the Lagrange points, which are diffeomorphic to circles (see [7]). Their interest for
mission design was first pointed out by Farquhar (see [14, 16]). Other families of periodic orbits,
called Lissajous orbits, have been identified and computed in [20], as well as quasi-periodic orbits
(see [21]). Halo orbits can be seen as Lissajous orbits of the first kind, and in the present article
we focus on Lissajous orbits of the second kind, diffeomorphic to eight-shaped curves. In Section
2 we recall how to prove their existence and explain a way to compute them.

Given a periodic orbit around a Lagrange point, the stable (resp. unstable) manifold of this
orbit is defined as the submanifold of the phase space consisting of all points whose future (resp.
past) semi-orbits converge to the periodic orbit (such orbits are said asymptotic). It is well
known that invariant manifolds of Lissajous orbits act as separatrices in the following sense (see
[19]): invariant manifolds can be seen as 4-dimensional tubes, topologically equivalent to S3×R,
in the 5-dimensional energy manifold mentioned previously. Due to this dimension feature, it
happens that they separate two kinds of orbits, called transit orbits and non-transit orbits. The
transit orbits are defined as orbits passing from one region to another, inside the 4-dimensional
tubes. The non-transit orbits are outside the tubes.
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2. Eight-shaped Lissajous orbits

2.1. Periodic solutions of the linearized equations

Let us first investigate the solutions of the linearized system (1.3) around Li, for i = 1, 2, 3. If
the initial conditions are restricted to non divergent modes, the bounded solutions of the linear
system are written as

x(t) = −Ax cos(ωpt+ φ),
y(t) = κAy sin(ωpt+ φ),
z(t) = Az cos(ωvt+ ψ),

(2.1)

where

κ =
w2
p + 1 + c2

2ωp
= 2λ
λ2 + 1− c2

,

and Ax, Ay and Az are generally referred to as the x-excursion, y-excursion and z-excursion.
One can immediately observe that the bounded solutions of the linear system are periodic if the
in-plane and the out-of-plane frequencies, ωp and ωv, have a rational ratio.

Moser’s Theorem mentioned previously implies that bounded trajectories can also be found
for the nonlinear system. They can be seen as perturbations of the bounded trajectories of the
linear system, the nonlinear terms acting on the amplitudes and the frequencies. This change
of frequencies induced by the nonlinearities has been used by Richardson to calculate an ap-
proximation of halo orbits (see [37]). In the next section we use this strategy to calculate an
approximation of eight-shaped Lissajous orbits.

In the expression of the bounded solutions of the linear system, the values of the frequencies
ωp and ωv are naturally determined from the system and the libration point under consideration.
But, as explained before, these eigenfrequencies change for the nonlinear system. If the nonlin-
earities generate equal frequencies ωp = ωv, then halo orbits are obtained. This was the method
used by Richardson to calculate an approximation of halo orbits. Similarly, Lissajous orbits can
be obtained whenever the quotient of the two eigenfrequencies is rational but different of 1 (see
[20, 21]).

2.2. Lindstedt Poincaré’s method

To calculate approximations of periodic solutions around the libration points, we use Lindstedt-
Poincaré’s method, based on the vision that the nonlinearities change the solutions of the lin-
earized system by changing their eigenfrequencies. This method is well known and has been very
well surveyed e.g. in [31]. The idea is that periodic or quasi-periodic solutions of the linearized
system (1.3) are characterized by an harmonic motion in the so-called in-plane (xy) with a
certain period, and an oscillation in the so-called out-of-plane z direction with another possible
period. For instance, to compute periodic halo orbits, one imposes that both periods coincide.
To compute planar and vertical Lyapunov families of periodic orbits, it suffices to take one of the
two amplitudes equal to zero; notice that these families of Lyapunov orbits tend to the libration
point whenever the amplitude tends to zero (see [31] and references therein for more details).

Here, since we aim at computing an eight-shaped Lissajous orbit, we consider a nominal eight-
shaped orbit, with frequencies ωp and ωv satisfying ωv = ωp

2 . With such values, the linearized
equations are written as

ẍ− 2ẏ − (1 + 2c2)x = 0,
ÿ + 2ẋ+ (c2 − 1)y = 0,
z̈ +

(ωp
2
)2
z = 0,

(2.2)

5



Grégory Archambeau, Philippe Augros, et al.

and have periodic orbits parametrized by

x(t) = −Ax cos(ωpt+ φ),
y(t) = κAy sin(ωpt+ φ),
z(t) = Az cos(ωp2 t+ ψ),

· (2.3)

which are eight-shaped, diffeomorphic to the solution drawn on Figure 2.1.

Figure 2.1. Representation of the curve x(t) = cos(2t), y(t) = sin(2t), z(t) =
20 cos(t), where t ∈ [0, 2π].

Imposing ωv = ωp
2 in the equations of motion (1.2) leads to

ẍ− 2ẏ − (1 + 2c2)x = ∂

∂x

∑
n≥3

cnρ
nPn

(
x

ρ

)
,

ÿ + 2ẋ+ (c2 − 1)y = ∂

∂y

∑
n≥3

cnρ
nPn

(
x

ρ

)
, (2.4)

z̈ +
(
ωp
2

)2
z = ∂

∂z

∑
n≥3

cnρ
nPn

(
x

ρ

)
+ ∆z,

where ∆ = (ωp2 )2−ω2
v . In such a way, the reference orbit of the Linsdtedt-Poincaré’s method is en-

forced to an eight-shaped orbit. Then, to take into account the fact that the nonlinearities change
the eigenfrequencies, the Linsdtedt-Poincaré’s method consists in considering time-varying fre-
quencies in the following way. Set τ = νt, and consider the corrected frequency

ν = 1 +
∑
n≥1

νn, νn < 1.

The method consists in tuning iteratively the parameters νn so as to filter out all secular terms
appearing in the expansion of the solution and causing a blow up. Let us introduce several nota-
tions and assumptions. First, for every integer p and all elements v and w of Rp, of coordinates
in the canonical basis of Rp,

v =


v1
v2
...
vp

 and w =


w1
w2
...
wp

 ,
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define v · ∗w ∈ Rp as the vector

v · ∗w =


v1w1
v2w2

...
vpwp

 .
With this notation, the reference solution is written as

qref (τ) =

 Ax
Ax
Az

 · ∗
 − cos(ωpτ + φ)

κ sin(ωpτ + φ)
sin(ωp2 τ + ψ)

 = Ā · ∗q0(τ).

The reference solution being considered as the first term of a series expansion, it is natural to
seek a periodic solution in the form of a series in Ā,

q(τ) =

 x(τ)
y(τ)
z(τ)

 = Ā · ∗q0 + Ā2 · ∗q1 + Ā3 · ∗q2 + . . . =

 Ax0(τ) +A2x1(τ) +A3x2(τ) + . . .
Ay0(τ) +A2y1(τ) +A3y2(τ) + . . .
Az0(τ) +A2z1(τ) +A3z2(τ) + . . .


(2.5)

where An denotes the two-variables polynomial of degree n

An =
n∑
l,p=1
l+p=n

λl,pA
l
xA
p
z.

Note that considering an n-th-order approximation of the solution amounts to truncating the
series expansion at order n. Finally, the νn are assumed to have the same order as An. We next
rewrite the equations of motion in terms of these variables,

ν2ẍ− 2νẏ − (1 + 2c2)x = 3
2

(2x2 − y2 − z2) + 2c4x(2x2 − 3y2 − 3z2) + 0(4),

ν2ÿ + 2νẋ+ (c2 − 1)y = −3c3xz −
3
2
c4y(4x2 − y2 − z2) + 0(4), (2.6)

ν2z̈ + (ωp
2

)2z = −3c3xz −
3
2
c4z(4x2 − y2 − z2) + ∆z + 0(4),

where the remainder term O(4) contains terms of order greater than or equal to 4. Then, plugging
the series expansion (2.5) into (2.6), one gets:

• at the first order in A:

Axẍ0 − 2Axẏ0 − (1 + 2c2)Axx0 = 0,
Axÿ0 + 2Axẋ0 + (c2 − 1)Axy0 = 0,

Az z̈0 +Az(
ωp
2

)2z0 = 0;

• at the second order in A:

A2ẍ1 − 2A2ẏ1 − (1 + 2c2)A2x1 = −2ν1Axẍ0 + 2ν1Axẏ0

+3
2

(
2A2
xx

2
0 −A2

xy
2
0 −A2

zz
2
0

)
,

A2ÿ1 + 2A2ẋ1 + (c2 − 1)A2y1 = −2ν1Axÿ0 − 2ν1Axẋ0 − 3c3A
2
xx0y0,

A2z̈1 + (ωp
2

)2A2z1 = −2ν1Az z̈0 − 3c3AxAzx0z0;
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• at the third order in A:

A3ẍ2 − 2A3ẏ2 − (1 + 2c2)A3x2 = −2ν1A
2ẍ1 − (ν1 + 2ν2)Axẍ0 + 2ν1A

2ẏ1

+2A3ẏ2 + 2ν2Axẏ0,

A3ÿ2 + 2A3ẋ2 + (c2 − 1)A3y2 = −2ν1A
2ÿ1 − 2ν1A

2ẋ1 − (ν2
1 + 2ν2)Axÿ2

−2ν2Axẋ0 − 3c3(AxA2x0y1 +AxA
2y0x1)

−3
2
c4Axy0(4A2

xx
2
0 −A2

xy
2
0 −A2

zz
2
0),

A3z̈2 + (ωp
2

)2A3z2 = −2ν1A
2z̈1 − (ν2

1 + 2ν2)Az z̈0

−3c3(AxA2x0z1 +AzA
2x1z0) + ∆Azz0.

The Lindstedt-Poincaré’s method now consists in determining the coefficients νn in function of
Ax and Az so as to filter out the secular terms that appear in the expansion of the solution. At
the first order in A, we recover the expected solution x0(τ)

y0(τ)
z0(τ)

 =

 − cos(ωpτ + φ)
κ sin(ωpτ + φ)
sin(ωp2 τ + ψ)

 .
At the second order in A, the equations in x and y are decoupled from the equation in z, and it is
possible to choose ν1 so as to filter out the possible secular terms that appear whenever modes of
the second member of the differential equation coincide with modes of the first member. In our
case, the modes of the equation without second member remain the same, that is (±λ,±iωp). As
a consequence, in the right-hand side, terms of frequency ωp must be cancelled. The terms in x2

0,
y2

0, z2
0 and x0z0 do not raise any problem since they are linearized into 1, cos(2ωpτ), sin(2ωpτ).

The terms ẍ0, ÿ0, ẋ0 and ẏ0 are linearized into cos(ωpτ) and sin(ωpτ) and may generate secular
terms. Since ν1 appears as a multiplicative scalar factor of those terms, it suffices to choose
ν1 = 0 to cancel secular terms. With this choice of ν1, the resulting differential equation is
written as

A2ẍ1 − 2A2ẏ1 − (1 + 2c2)A2x1 = 3
2

(2A2
xx

2
0 −A2

xy
2
0 −A2

zz
2
0),

A2ÿ1 + 2A2ẋ1 + (c2 − 1)A2y1 = −3c3A
2
xx0y0,

and can be solved explicitly. We get

A2

 x1(τ)
y1(τ)
z1(τ)

 =

 a21A
2
x + a22A

2
z + (a23A

2
x − a24A

2
z) cos(2ωpτ + φ)

(b21A
2
x − b22A

2
z) sin(2ωpτ + φ)

δrd21AxAz(cos(2ωp2 τ + ψ)− 3)

 ,
with δr = 2 − r, where r characterizes the class of the orbit and in particular its direction of
rotation (r = 1 for a first class orbit and r = 3 for a second class orbit).

Then, the next step consists in plugging the obtained expressions of x1, y1 into the equations
in x and y at the third order, and to determine the parameter ν2 so as to filter out the possible
secular terms. Easy calculations show that one must choose

ν2 = s1A
2
x + s2A

2
z,

where

s1 =
3
2c3(2a21(κ2 − 2)− a23(κ2 + 2)− 2κb21)− 3

8(3κ4 − 8κ2 + 8)
2λ(λ(1 + κ2)− 2κ)

,

s2 =
3
2c3(2a22(κ2 − 2)− a24(κ2 + 2) + 2κb22 + 5d21) + 3

8c4(12− κ2)
2λ(λ(1 + κ2)− 2κ)

,
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where κ = 1
2λ(λ2 + 1 + 2c2), and λ is solution of λ4 + (c2 − 2)λ2 − (c2 − 1)(1 + 2c2) = 0. The

coefficients aij , bij and dij are given by

a21 = 3c3(κ2 − 2)
4(1 + 2c2)

, a22 = 3c3
4(1 + 2c2)

,

a23 = −3c3λ

4κd1
[3κ3λ− 6κ(κ− λ) + 4], a24 = −3c3λ

4κd1
(2 + 3κλ),

a31 = − 9λ
4d2

(4c3(κa23 − b21) + κc4(4 + κ2))

+
(

9λ2 + 1− c2
2d2

)(
3c3(2a23 − κb21) + c4(2 + 3κ2)

)
,

a32 = − 1
d2

(9λ
4

(4c3(κa24 − b22) + κc4)

+3
2

(9λ2 + 1− c2) (c3(κb22 + d21 − 2a24)− c4)
)
,

b21 = −3c3λ

2d1
(3κλ− 4), b22 = 3c3λ

d1
,

b31 = 3
8d2

(
8λ
(
3c3(κb21 − 2a23)− c4(2 + 3κ2)

)
+(9λ2 + 1 + 2c2)

(
4c3(κa23 − b21) + κc4(4 + κ2)

) )
,

b32 = 1
d2

(
9λ (3c3(κb22 + d21 − 2a24)− c4)

+3
8

(9λ2 + 1 + 2c2) (4c3(κa24 − b22) + κc4)
)
,

d21 = − c3
2λ2 , d31 = 3

64λ2 (4c3a24 + c4),

d32 = 3
64λ2

(
4c3a23 − d21 + c4(4 + κ2)

)
,

with d1 = 3λ2

κ

(
κ(6λ2 − 1)− 2λ

)
and d2 = 8λ2

κ

(
κ(11λ2 − 1)− 2λ

)
.

Secular terms appearing in the third-order equation in z cannot be removed by choosing
a coefficient νi as previously. It is necessary to specify amplitude and phase angle constraint
relationships in order to filter out these secular terms. The amplitude constraint relationship is

l1A
2
x + l2A

2
z + ∆ = 0,

where l1 = a1 + 2l2s1 and l2 = a2 + 2l2s2, with a1 = −3
2c3(2a21 + a23 + 5d21)− 3

8c4(12− k2) and
a2 = 3

2(a24 − 2a22) + 9
8c4, and the phase angle constraint relationship is

ψ = φ+ rπ

2
, r = 1, 3.

Note that the formulas defining the coefficients li, ai,j , bi,j and dij are the same as the ones
obtained by Richardson in [37] to determine a third-order approximation of the halo orbits.
With these relations, calculations lead to

A3

 x2(τ)
y2(τ)
z2(τ)

 =

 (a31A
3
x − a32AxA

2
z) cos(3ωpτ + φ)

(b31A
3
x − b32AxA

2
z) sin(3ωpτ + φ)

δr(d32AzA
2
x − d31A

3
z) cos(3ωp2 τ + ψ)

 .
9
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Finally, we arrive at the following third-order approximation of eight-shaped Lissajous orbits:

x = a21A
2
x + a22A

2
z −Ax cos(τ1) + (a23A

2
x − a24A

2
z) cos(2τ1)

+(a31A
3
x − a32AxA

2
z) cos(3τ1),

y = kAx sin(τ1) + (b21A
2
x − b22A

2
z) sin(2τ1) + (b31A

3
x − b32AxA

2
z) sin(3τ1),

z = δrAz cos(τ2) + δnd21AxAz(cos(2τ2)− 3) + δn(d32AzA
2
x − d31A

3
z) cos(3τ2),

where τ1 = ωpτ + φ and τ2 = ωp
2 τ + ψ. These formulas provide an approximation of possible

initial points of eight-shaped Lissajous orbits, parametrized by their z-excursion Az. As we will
see in the next section, these third-order approximations are satisfactory for small values of Az
but are not precise enough for larger values, and we will use a continuation method to compute
our periodic orbits.

2.3. Computation of a family of eight-shaped Lissajous orbits

In the previous section, a third-order approximation of eight-shaped Lissajous periodic orbits
has been calculated analytically. In this section we show how to compute a family of eight-shaped
Lissajous orbits, parametrized by the z-excursion Az. The previous third-order approximation of
those orbits, used as an initial guess in a Newton-like procedure, permits to compute some eight-
shaped Lissajous orbits for small values of Az but is not precise enough to initialize successfully
the Newton method for larger values. To overcome this problem, one may then try to derive
an approximation of larger order, so as to get a more precise initial guess, in the hope that it
will suffice to make converge the Newton procedure (as done e.g. in [20, 21, 26, 31] where this
procedure has been implemented). Instead of that, we use here a continuation method on the
parameter Az, in order to generate a family of eight-shaped Lissajous orbits. The procedure is
detailed next.

We first recall how Newton’s method is usually implemented to compute periodic orbits in
the restricted three body problem. Notice that, if (x(t), y(t), z(t)) is a solution of the system,
then (x(−t),−y(−t), z(−t)) is also solution. Using this symmetry property, the method consists
in determining an adapted initial condition X0 on the plane y = 0, with a velocity orthogonal to
this plane, thus of the form X0 = (x0, 0, z0, 0, ẏ0, 0)T , generating a semiorbit which reintersects
the plane y = 0 orthogonally. Fixing the z-excursion z0, Newton’s method consists in tuning the
values of the initial coordinates x0, ẏ0 and of the orbital period T so that the corresponding
solution verifies y(T2 ) = ẋ(T2 ) = ż(T2 ) = 0. This shooting method permits to reach a very good
precision and is then used at every step of the iteration procedure of the continuation method
described next.

Let Az be the z-excursion of the eight-shaped Lissajous orbit to be computed, and X0 the
corresponding initial condition to be determined. If A0

z is the z-excursion of the first eight-
shaped Lissajous orbit computed thanks to the third-order approximation, the continuation
method consists in making the z-excursion vary from A0

z to Az, according to an appropriate
subdivision, and solving at each iteration the Newton’s problem initialized with the result of
the previous step. More precisely, let Anz be the n-th z-excursion of the subdivision. Assume
that each eight-shaped Lissajous orbit has already been computed for Apz, p ∈ 1, . . . , n, the
resulting initial condition being noted Xp0 . In order to compute the eight-shaped Lissajous orbit
of z-excursion An+1

z , the continuation method consists in using the initial condition Xn0 as a
first guess for the Newton’s method. If the subdivision is fine enough then the Newton’s method
converges to a point which is then chosen as initial guess Xn+1

0 . The latter is used to compute the
eight-shaped Lissajous orbit of z-excursion An+1

z , and the procedure goes on by iteration, until
the eight-shaped Lissajous orbit of z-excursion Az is computed. Table (2.1) draws a diagram of
the continuation procedure.

10
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Newton’s
Initial information −→ Numerical results

method
A0
z, X

0
0 −→ X1

0
↙

A1
z, X

1
0 −→ X2

0
↙

...
...

...
↙

An−1
z , Xn−1

0 −→ Xn0
↙

Az, X
n
0 −→ X0

Table 2.1. Continuation method algorithm

A single eight-shaped Lissajous orbit around Lunar L1 (that is the Lagrange point L1 in the
Earth-Moon system) is represented on Figure 2.2 in position and velocity spaces.

(a) (b)

Figure 2.2. (a) Eight-shaped Lissajous orbit around Lunar L1 in the position
space. (b) Eight-shaped Lissajous orbit around Lunar L1 in the velocity space.

Figure 2.3 represents the projections of a family of eight-shaped Lissajous orbits on the planes
(x, y), (y, z) and (x, z) computed using the continuation method.

Remark 2.1. To generate a starting point of the above computed family, we used the approxima-
tion at the third order described in the previous section. Then, the family has been generated by
continuation on the excursion parameter. For the continuation method to hold, it is necessary
that one does not encounter any singularity. In particular, our family must not contain any orbit
of collision. Note that it is not our aim to generate exhaustive families of orbits, but rather to
compute some of them and then to investigate their stability properties. Our work is prospective.

Remark 2.2. It is interesting to compare the approximations derived from the Lindstedt-Poincaré
method with the continuation method. Such simulation results are reported in Table 2.3, in which
the first column consists of the excursion parameters Az of some family of eight-shaped Lissajous
orbits around the Lagrange point L2 in the Earth-Moon system, and the second (resp. the third)
column reports the norm of the difference of initial points (resp. velocities) of both methods. All
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(a) (b)

(c) (d)

Figure 2.3. Family of eight-shaped Lissajous orbits and their projection on the
(x, y), (y, z) and (x, z)-planes.

data are given in normalized units, in the sense that the distance of the point L2 to the Moon
is equal to 1, and the rotation period around the Moon is equal to 2π. We observe on this table
that the precision deteriorates while Az increases, as expected. Notice also that, when applying
the Newton method with the starting point determined by the third-order Linstedt-Poincaré
approximation, the method converges only for the two smallest values of the table (this means
that the approximation point falls into the domain of convergence of the Newton method) and
diverges for larger values.

3. Properties of invariant manifolds of eight-shaped Lissajous orbits near L1

3.1. Empiric stability

The interest of eight-shaped Lissajous orbits is mainly in two properties shared by their invari-
ant manifolds. The stable (resp. unstable) manifold of an eight-shaped Lissajous orbit is the
submanifold of the phase space consisting of all points whose future (resp. past) semi-orbits con-
verge to it (asymptotic orbits). Locally, in the neighborhood of a given eight-shaped Lissajous
orbit, they look like eight-shaped tubes (see Figure 3.1).

To compute the invariant manifolds, their linear approximation is first used around periodic
orbits. At each point a of a given eight-shaped Lissajous orbit Σ, one computes the eigenvectors
V s(a) and V u(a) associated with the real eigenvalues of the monodromy matrix at a that are
lower and greater than 1. Then, one gets an approximation of the stable and unstable manifolds
by propagating the orbits solutions of the equations of motion starting from initial conditions

X0 = a+ εV (a),

12
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Az norm of the difference norm of difference
of initial points of initial velocities

00010 2.480508256e-003 2.571078939e-009
00100 3.963632986e-003 2.543435521e-007
00500 1.572915399e-002 6.357949547e-006
01000 3.116814309e-002 2.543210324e-005
02000 6.219001345e-002 1.017338378e-004
03000 9.324351620e-002 2.289214928e-004
04000 1.243040288e-001 4.070222970e-004
05000 1.553663195e-001 6.360745378e-004
06000 1.864283990e-001 9.161277288e-004
07000 2.174892057e-001 1.247242823e-003
08000 2.485480265e-001 1.629492124e-003
09000 2.796043035e-001 2.062960975e-003
10000 3.106575570e-001 2.547746083e-003
15000 4.658639258e-001 5.745728564e-003
20000 6.209357375e-001 1.024907118e-002
25000 7.758283810e-001 1.608681682e-002
30000 9.304997024e-001 2.329998323e-002
35000 1.084910366e+000 3.194329031e-002
40000 1.239024778e+000 4.208546810e-002
45000 1.392812237e+000 5.380583070e-002
50000 1.546248002e+000 6.718267632e-002
55000 1.699313566e+000 8.226533883e-002
60000 1.851994604e+000 9.901585020e-002

Table 2.2

Figure 3.1. Invariant manifolds in the neighborhood of an eight-shaped Lis-
sajous orbit

where a belongs to the eight-shaped Lissajous orbit, V (a) is a normalized stable or unstable
eigenvector of the monodromy matrix at a, and ε is a positive real number, small enough
to ensure a good linear approximation but however not too small in order to avoid too long
integration times. Indeed, the asymptotic orbits which generate the invariant manifolds rotate
strongly when tending to the eight-shaped Lissajous orbit (see e.g. [26]). Some numerical results
are provided on Figure 3.2, for the Lagrange point L1 in the Earth-Moon system. In the sequel,
all our simulations concern orbits around the Lagrange point L1 in the Earth-Moon system. In
this system, denoting by ME the mass of the Earth and by MM the mass of the Moon, there
holds µ = MM

ME+MM = 0.01215616930968.
A first important property that we observe on the numerical simulations is that, contrarily

to halo orbits, the invariant manifolds of eight-shaped Lissajous orbits seem to keep the same
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(a) Invariant manifolds of an eight-shaped Lissajous
orbit

(b) Invariant manifolds of a halo orbit

Figure 3.2. Invariant manifolds of an eight-shaped Lissajous orbit and of a halo orbit

structure in large time. This global stability property which is numerically observed is also
illustrated on Figure 3.3 where different images of an eight-shaped Lissajous orbit by the flow at
different times are represented. These simulations were realized for a given eight-shaped Lissajous
orbit of the previously computed family of orbits, and we observe on our simulations that our
qualitative observations do not depend on the specific orbit that is chosen in the family.

(a) Invariant manifold of an eight-shaped Lissajous
orbit around the Lagrange point L1 in the Earth-
Moon system

(b) Images of the eight-shaped Lissajous orbit by the
flow at different times

Figure 3.3

This property is of particular interest for mission design. Note that such a stability property
does not hold for halo orbits. Indeed, the invariant manifolds of a classical halo orbit have the
aspect of a regular tube in the neighborhood of the orbit but this regular aspect is not persistent
far away from the halo orbit and/or in large integration time; in particular these tubes behave
in a chaotic way in large time. In contrast, the regular structure of invariant manifolds of eight-
shaped Lissajous orbits is conserved even after a large integration time. This global stability
property may be relevant for mission computation since it allows to predict the behavior of the
trajectories which propagate on and inside these invariant manifolds in large time.
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Remark 3.1. As pointed out by one of the reviewers, this stability property is in accordance
with the fact that eight-shaped Lissajous orbits should not have any homoclinic nor heteroclinic
connections (see [3]).

We next investigate in more details these stability properties of invariant manifolds of halo
and eight-shaped Lissajous orbits (related to the Lagrange point L1 of the Earth-Moon system)
using Lyapunov exponents.

3.2. Local Lyapunov Exponents

The concept of Lyapunov exponents (or characteristic exponents) was introduced in [29] in
order to investigate the stability properties of solutions of differential equations, and has been
extensively used and studied in the literature. Lyapunov exponents measure the exponential
convergence or divergence of nearby trajectories in a dynamical system, and provide indications
on the behavior in large time of solutions under infinitesimal perturbations. A positive Lyapunov
exponent means that nearby trajectories may diverge, whereas a negative Lyapunov exponent
indicates a stability property. Computational issues have been studied e.g. in [10] (see also
references therein). We use here this concept to investigate stability features of the invariant
manifolds of eight-shaped Lissajous orbits.

First of all, recall the following general facts. Consider a nonlinear differential equation ẋ(t) =
f(t, x(t)) in Rn, with x(0) = x0, where f is of class C1. An important consequence of the seminal
article [35] of Oseledec is that the Lyapunov exponents of an ergodic dynamical system do not
depend on the specific trajectory; more precisely, given any invariant measure µ for the flow,
they are the same for µ-almost every initial condition. Let now x(·) be a solution; for every
s ∈ R, the resolvent t 7→ Φ(t, s) along x(·) (also called state transition matrix) is defined as the
unique n× n matrix solution of the linearized system along x(·)

Ẏ (t) = ∂f

∂x
(t, x(t)).Y (t), Y (s) = In.

For every t ≥ 0, set Λx0(t) =
(
Φ(t, 0)TΦ(t, 0)

)1/2t
. Then, in the ergodic case the matrix

Λ = limt→+∞ Λx0(t) is well defined and is symmetric positive definite, is almost everywhere
independent on x0 with respect to an ergodic measure (see [35]), and the Lyapunov exponents
λi are defined as the logarithm of the eigenvalues µi of Λ; moreover, denoting vi the eigenvectors
associated to the eigenvalues µi, for i = 1, . . . , n, one has

λi = lim
t→+∞

1
t
ln‖Φ(t, 0)vi‖,

where ‖ · ‖ denotes the Euclidean norm. These coefficients provide an indication on how nearby
trajectories of the system may converge or diverge from x(·). Notice that this is an ergodic result,
that is valuable whenever t tends to +∞: in ergodic systems, almost all trajectories yield the
same Lyapunov exponents.

The situation is different if trajectories are followed in finite time. Instead of taking the limit,
one defines, for ∆ > 0, the local Lyapunov exponent (in short, LLE)

λ(t,∆) = 1
∆

ln
(

maximal eigenvalue of
√

Φ(t+ ∆, t)ΦT (t+ ∆, t)
)
. (3.1)

Note that, if ∆ tends to +∞, one recovers the usual Lyapunov exponent. The parameter ∆
stands for a positive duration over which the effect of some perturbations is tested. Contrarily
to the Lyapunov exponents, the LLEs depend on the initial point, on the specific reference
trajectory x(·) that is followed, and on the duration ∆. Such exponents, defined e.g. in [10,
12], give information on the nonuniform properties of the system, and provide an indication
on the effect a perturbation at time t would be expected to have over a duration ∆. Large
LLEs indicate that the trajectory crosses a region where the dependence with respect to initial
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conditions is strong, hence the predictability of the evolution of the trajectory in such a region
region is restricted. If they are small, or negative, then the predictability in this region of
the space is improved. Definitions and algorithms to compute such exponents were given in
[1, 5, 10, 12, 39, 40]. In [2], a stability technique based on local Lyapunov exponents is applied
for maneuver design and navigation in the three-body problem. It is shown in [9] that finite-time
Lyapunov exponents can provide useful information on the qualitative behavior of trajectories
in the context of astrodynamics. Local Lyapunov exponents are used to determine the behavior
of nearby trajectories in finite time. They provide indications on the effects that perturbations
or maneuvers will have on trajectories over a certain period of time. In the case of the circular
restricted three-body problem, which is known to be chaotic, local Lyapunov exponents cannot
be expected to be negative. It is however interesting to compute local Lyapunov exponents in our
study to measure the stability of eight-shaped Lissajous orbits and of their invariant manifolds,
and compare them with the ones of classical halo orbits and of their invariant manifolds.

When ∆ is large, the eigenvectors of the matrix
√

Φ(t+ ∆, t)ΦT (t+ ∆, t) tend to align along
the eigenspace associated with the maximal eigenvalue. A Gram-Schmidt reduction procedure
can be used for the computation of Lyapunov exponents in order to identify the eigenelements.
Nevertheless, since we are only interested in the maximal eigenvalue of the above matrix, this
procedure is not necessary. Concerning the units, the Lyapunov exponents measure the rate at
which a system creates or destroys information, and are usually expressed in information per
second or per day.

In our study, the local Lyapunov exponents were computed every 0.1-day time step along
selected trajectories, with ∆ = 1 day (see Figure 3.4). Note that similar results are obtained for
other values of ∆ (for instance, ∆ = 20 days), and thus are not reported here.

(a) (b)

Figure 3.4. (a) Local Lyapunov exponent along a halo orbit. (b) Local Lya-
punov exponent along an eight-shaped Lissajous orbit.

On Figure 3.4, LLEs are computed along a halo orbit and an eight-shaped Lissajous orbit of
similar energy, around the Lagrange point L1 in the Earth-Moon system. The first observation
that can be done is that in both cases the LLEs are positive. As said before this is in accordance
with the chaotic character of the whole system. This means that in both cases nearby trajectories
of the periodic orbit may diverge over a certain period of time. However both LLEs behave
differently. On the one hand the maximal value of the LLE of the halo orbit is greater than
the values of the LLE of the eight-shaped Lissajous orbit, which remains almost constant. On
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the other hand, the interval between minimal and maximal values of the LLE of the halo orbit
contains the set of values of the LLE of the eight-shaped Lissajous orbit, and the mean values
of the LLEs of both orbits seem to be almost the same. This fact can be explained from the
following fact: the closer a trajectory gets to a primary (the Moon in this case), the higher its LLE
will be. Since the eight-shaped Lissajous orbit is almost vertical, its distance to the primaries
remains almost constant during its whole period, and its LLE remains almost constant too.
On the contrary, for the same value of energy, the x-excursion of the halo orbit varies a lot
(several thousands of kilometers) and hence the orbit gets closer to the Moon. Its LLE varies
from a minimal value corresponding to the furthermost point to the Moon, to a maximal value
corresponding to the closest point to the Moon. Depending on the energy value, this maximal
value gets larger as the orbit gets closer to the Moon. Finally, the stability properties of these
periodic orbits are related to their geographic situation. These specificities make that the plots
of their LLE versus time are different, but their geographic situation around the same Lagrange
point makes that none of them can be said more stable than the other.

(a) (b)

Figure 3.5. (a) Local Lyapunov exponent of the invariant manifolds of a halo
orbit. (b) Local Lyapunov exponents of the invariant manifolds of a eight-shaped
Lissajous orbit.

The situation is completely different for their invariant manifolds. On Figure 3.5, local Lya-
punov exponents are computed along the invariant manifolds of the previous halo and eight-
shaped Lissajous orbits. The stability difference was not evident concerning the periodic orbits,
but this is not the case for their invariant manifolds. In the Earth’s realm (in blue on the figure),
the LLEs of the invariant manifolds are close for both periodic orbits (by looking closer, the
LLEs of the eight-shaped Lissajous orbit manifolds is lower, but the difference is small). In the
Moon’s realm, the stability difference is evident. The LLEs of the halo orbit manifolds reach
11 days(−1) whereas the LLEs of the eight-shaped Lissajous manifolds take values lower than
5 days(−1) and the difference is similar concerning the mean values. This confirms that some
trajectories of the halo orbit manifolds (and the manifolds themselves) are very unstable. As a
consequence, predicting the behavior of such a trajectory may happen to be difficult. Things
are going differently for the asymptotic trajectories generating the eight-shaped Lissajous mani-
folds. Their LLEs indicate possible instabilities but, in spite of their small distance to the Moon
(which, as mentioned previously, may create instabilities), their LLEs take reasonable values.
Notice also that the plot of the LLEs of the eight-shaped Lissajous manifolds has a very smooth
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aspect, in contrast with the chaotic aspect of the LLEs of halo orbit manifolds. This is in ac-
cordance with the fact that the eight-shaped Lissajous manifolds keep their regular structure
of eight-shaped tube even after a large integration time. This nice stability property over large
time of the eight-shaped Lissajous manifolds is of potential interest for mission design with low
cost.

We stress once again that our simulations lead to similar results for every Lissajous orbit of
our one-parameter family of orbits, but we do not claim that the property holds for any possible
eight-shaped Lissajous orbit; our current study is prospective, certainly not exhaustive. By the
way, the question of deriving rigorously a stability statement, possibly based on the study of
some Lyapunov function or something similar, is open.

3.3. Accessible lunar region with the eight-shaped Lissajous invariant manifolds re-
lated to the Lagrange point L1 in the Earth-Moon system

The second interesting property concerning the invariant manifolds of eight-shaped Lissajous
orbits is the large accessible lunar region that they cover over large time. By propagating the
invariant manifolds of an eight-shaped Lissajous orbit, we observe an oscillating behavior around
both primaries. For a given invariant manifold, the part that oscillates around the bigger primary
stays rather far from it but the part around the smaller one gets close to it. Our study concerns
the Earth-Moon system, and we observe that the part of the invariant manifold in the Earth
region stays too far from the Earth to plan a mission using it for a direct departure from the
Earth. At the opposite, the part that oscillates around the smaller primary (the Moon) oscillates
close to it and thus may be used for a departure or a capture around the Moon (see Figure 3.6).

Figure 3.6. Invariant manifolds of an eight-shaped Lissajous orbit in the neigh-
borhood of the Moon.

The oscillation of these invariant manifolds is not new compared with what can be observed
in the classical case of halo orbits. Nevertheless, the constant oscillation of invariant manifolds of
eight-shaped Lissajous orbits in the lunar region on the one hand, and the global eight-shaped
structure of these manifolds on the other hand, are interesting properties for mission design.
Indeed, such invariant manifolds may be used to visit almost all the surface of the Moon, at any
time, as shown next. Notice however that, in practice, some other restrictions must be considered,
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such as eclipse avoidance, that may cause unfeasibility of the mission (see e.g. [8, 22, 23] for such
issues and possible maneuvers).

The idea of using the specific properties of the dynamics around Lagrange points in order to
explore lunar regions is far to be new (see e.g. [4, 11, 15, 18, 30, 33]) but has received recently a
renewal of interest, in view of new space missions possibly involving a lunar space station (see
e.g. [17, 26, 28, 36, 41]).

Lunar strip covered by the invariant manifolds. On Figure 3.7, we have computed the
projection onto the Moon of the invariant manifolds of an eight-shaped Lissajous orbit. We
observe that, over a long period, a large surface of the Moon may be scanned, depending on the
value of the z-excursion of the orbit.

(a) (b)

Figure 3.7. Lunar strip covered by the invariant manifolds for (a) Az=10000
km and (b) Az=50000 km.

First, on Figure 3.7, we observe that, for every value of the z-excursion of the eight-shaped
Lissajous orbit, every longitude can be reached. This is due to the oscillation property observed
previously. However, this oscillation staying at the equator’s level, the latitudes flown over by
the manifolds depend on the z-excursion of the eight-shaped Lissajous orbit. If the z-excursion
is small, then the latitudes reached are small too. Larger latitudes are reached whenever the z
excursion is getting larger. For a z-excursion value equal to 50000 km, and for larger values of the
z-excursion, almost all the lunar surface can be scanned from the invariant manifolds. Only the
poles cannot be reached directly. A maneuver should be performed to fly over the lunar poles.
Anyway, these results show the relevance of invariant manifolds of the eight-shaped Lissajous
orbits under consideration to scan almost all the Moon’s surface at low cost.

The perigee-angle representation. To complete the previous results, we provide the plot
of the invariant manifolds in the perigee-angle plane. For each asymptotic trajectory of the
invariant manifolds, the minimal distance to the Moon (perigee) and the corresponding latitude
(angle) are computed.

On Figure 3.8, it is observed that the angles of the perigees range between 20 and 45 degrees.
The fact that the range of angles drawn on this figure is smaller than the range of angles covered
by the manifolds is not contradictory, since trajectories of invariant manifolds, close to the Moon,
reach their closest point to the Moon for a value of inclination between 20 to 45 degrees. Notice
that these closest points correspond to positions on the hidden face of the Moon and generally
occur at the first oscillation of the manifold around the Moon, i.e, within short time.
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Figure 3.8. Invariant manifolds of eight-shaped Lissajous orbits in the perigee-
angle plane

Figure 3.8 shows that the minimal distance to the Moon oscillates between 1500 and 5000
kilometers, depending on the z-excursion of the eight-shaped Lissajous orbit (see Table 3.3). The
minimal distances are reached after a 9-to-50 days journey from the periodic orbit, but it is clear
that for each trajectory 9 days are sufficient to get close enough to the Moon to be captured.

The results about the invariant manifolds oscillating around the Earth are not provided here,
since they do not appear to be as relevant as those concerning the Moon. We however mention
that the minimal distance between the manifolds of the exterior realm and the Earth oscillate
between 115000 and 125000 km, also depending on the value of the z-excursion, with a 40-days
journey between the perigee and the eight-shaped Lissajous orbit. This journey duration can
be half reduced since similar approach distances are reached after 20 days. In both cases, the
corresponding inclinations are meaningless given the large distance between the manifolds and
the Earth.

Finally, these results highlight the potential interest of eight-shaped Lissajous orbits (related
to the Lagrange point L1 in the Earth-Moon system) and of their invariant manifolds. Using
them, every point located on a circular band around the lunar equator may be reached from the
periodic orbit. Except the poles, almost every point of the lunar surface may be flown over from
an eight-shaped Lissajous orbit with a large z-excursion.

Conclusion

In this article, we focused on particular periodic orbits around Lagrange points in the circular
restricted three-body problem, called eight-shaped Lissajous orbits. A third-order approximation
of these orbits has been derived using Lindstedt-Poincaré’s method, and families of eight-shaped
Lissajous orbits have been computed using a shooting method combined with a continuation
method. Then we have shown that eight-shaped Lissajous orbits related to the Lagrange point
L1 in the Earth-Moon system have interesting features. First, their invariant manifolds keep a
stable eight-shaped structure over large time, in contrast to the ones of halo orbits. This fact
has been put in evidence by computing local Lyapunov exponents. Second, we have shown that
invariant manifolds of eight-shaped Lissajous orbits permit to scan almost all the surface of the
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z-excursion of Approach time Approach distance Approach time Approach distance
the eight-shaped to the Earth to the Earth to the Moon to the Moon

Lissajous orbit (in km) (in days) (in km) (in days) (in km)
1000 40 116730 43 1673
5000 40 116650 43 1627
10000 40 116800 43 1514
20000 40 117380 9 4502
30000 40 118340 9 5122
40000 40 119670 39 3280
50000 40 121340 42 3333

Table 3.1. Minimal approach time and distance of the manifolds to the Earth
and to the Moon in function of the z-excursion of the eight-shaped Lissajous
orbit.

Moon, depending on the value of the z-excursion. These properties are of potential interest for
low cost mission design. Of course such strategies may require a long time transfer and then a
compromise has to be found between the energy consumption and the time of transfer. Note also
that, having in mind an Earth-Moon mission, invariant manifolds oscillating around the Earth
cannot be used directly for a departure from the Earth, due to their too large distance to the
Earth. On the contrary, the stability properties of the eight-shaped Lissajous orbits invariant
manifolds and the accessibility to the lunar surface provide interesting perspectives, such as easy
and economic communications between a spacecraft exploring the Moon and an orbital station
based on an eight-shaped Lissajous orbit around the Lagrange point L1 in the Earth-Moon
system. From such an orbital station, almost every point of the Moon may be visited at any
time with a low cost.
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