A simple mathematical model for the growth and division of cells
MathematicS In Action, Tome 8 (2017) no. 1, pp. 1-8.

In this paper, we derive an electrostatic-electrodynamic model of the exchanges of ions between a cell and its exterior during its growth, as well as a model of exchange of ions within the cell. Observations show that, in the phase G1, the growth of the volume explains the variation of density of ions (by dilution), hence explains the change of electrostatic potential inside the cell. The potential encounters a threshold at the beginning of phase S, and the ion channels open (the conductance of the membrane increases). This afflux of ions leads to a change of potential, which will trigger the disappearance of the nucleus double membrane (through the calcium channels).

From these remarks on the electric phenomena in the cell, one deduces a simple mathematical model, which is a generalization of the Hodgkin-Huxley model for the axons, for the cell cycle.

Publié le :
DOI : 10.5802/msia.10
Jorgelindo da Veiga 1 ; Olivier Lafitte 2 ; Laurent Schwartz 3

1 Ecole Polytechnique, LIX, UMR 7161 1 rue Honoré d’Estienne d’Orves Bâtiment Alan Turing Campus de l’Ecole Polytechnique 91191 Palaiseau Cedex daveiga@lix.polytechnique.fr France
2 LAGA, Institut Galilée Université Paris 13, Sorbonne Paris Cité. 99, avenue J.B. Clément 93430 Villetaneuse France
3 Assistance Publique-Hopitaux de Paris 75 Paris, France dr.laurentschwartz@gmail.com
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{MSIA_2017__8_1_1_0,
     author = {Jorgelindo da Veiga and Olivier Lafitte and Laurent Schwartz},
     title = {A simple mathematical model for the growth and division of cells},
     journal = {MathematicS In Action},
     pages = {1--8},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {8},
     number = {1},
     year = {2017},
     doi = {10.5802/msia.10},
     mrnumber = {3745382},
     zbl = {1406.92146},
     language = {en},
     url = {https://msia.centre-mersenne.org/articles/10.5802/msia.10/}
}
TY  - JOUR
AU  - Jorgelindo da Veiga
AU  - Olivier Lafitte
AU  - Laurent Schwartz
TI  - A simple mathematical model for the growth and division of cells
JO  - MathematicS In Action
PY  - 2017
SP  - 1
EP  - 8
VL  - 8
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://msia.centre-mersenne.org/articles/10.5802/msia.10/
DO  - 10.5802/msia.10
LA  - en
ID  - MSIA_2017__8_1_1_0
ER  - 
%0 Journal Article
%A Jorgelindo da Veiga
%A Olivier Lafitte
%A Laurent Schwartz
%T A simple mathematical model for the growth and division of cells
%J MathematicS In Action
%D 2017
%P 1-8
%V 8
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U https://msia.centre-mersenne.org/articles/10.5802/msia.10/
%R 10.5802/msia.10
%G en
%F MSIA_2017__8_1_1_0
Jorgelindo da Veiga; Olivier Lafitte; Laurent Schwartz. A simple mathematical model for the growth and division of cells. MathematicS In Action, Tome 8 (2017) no. 1, pp. 1-8. doi : 10.5802/msia.10. https://msia.centre-mersenne.org/articles/10.5802/msia.10/

[1] J. Boonstra et al Cation transport and growth in neuroblastoma cells, modulation of K + transport and electrical membrane properties during the cell cycle, Journal of cellular physiology (1981)

[2] L. Groigno; M. Whitaker An anaphase calcium signal controls chromosome disjunction in early sea urchin embryos, Cell, Volume 92 (1998), pp. 193-204 | DOI

[3] A.L. Hodgkin; A.F. Huxley A quantitative description of membrane current and its application to conduction and excitation in nerves, Journal of Physiology, Volume 117 (1952), pp. 500-544 | DOI

[4] Cronin J. Mathematical aspects of Hodgkin-Huxley neural theory, Cambridge University Press, 1987 | DOI | Zbl

[5] Rafelski S.M. Jayashankar V. Shaping the multiscale architecture of mitochondria, Current opinion in cell biology, Volume 38 (2016), pp. 45-51 | DOI

[6] Levy Noriega M. Lafitte O. Steyaerts J.M. Bakardjan H. Dubois B. Hampel H. Schwartz L. Mechanical stress related to brain atrophy in Alzheimer’s disease, Alzheimer’s and Demential, Volume 12 (2016) no. 1, pp. 11-20 | DOI

[7] C. Poignard et al O. Kavian Classical electropermeabilization modelling at the cell scale, Journal of theoretical biology, Volume 68(1-2) (2014) no. 1-2, pp. 235-265 | Zbl

[8] L. Schwartz Cancer, un traitement simple et non toxique, Thierry Souccar Collection ’Medecine’, 2016

[9] Fleury V. Schwartz L. Diffusion Limited Aggregation from Shear Stress As a Simple Model of Vasculogenesis 1999, Fractals, Volume 7 (1999) no. 1, pp. 33-39 | DOI

[10] E. Desmond-Le Quéméner T. Bouchez A thermodynamic theoriy of microbial growth, The ISME Journal, Volume 8 (2014), pp. 1747-1751 | DOI

[11] Mummery C. Van Zoelen E. Membrane regulation of the Na + , K + -ATPase During the Neuroblastoma Cell Cycle: correlation with protein mobility, J. Cellular Biochemistry, Volume 21 (1983), pp. 77-91 | DOI

Cité par Sources :