Inverse Stefan problem from indirect measurements, application to zircon crystallization
MathematicS In Action, Tome 14 (2025) no. 1, pp. 1-21

The growth of zircon crystals in cooling magmas is modelled by the one-phase Stefan problem, with the growth rate that depends on the magma cooling rate. Some rare elements (like e.g. U, Th, Hf) are incorporated in the crystal at trace concentration. These elements have different temperature-dependent diffusion and partition coefficients. As a consequence their final spatial repartition in the crystal depends on the temperature evolution of the magma during the cooling.

The present work proposes to reconstruct the temperature evolution from the measurements of trace elements concentration in natural zircon. This inverse problem is solved by minimizing the misfit between calculated and measured trace element concentrations. The tangent model to the one-phase Stefan problem provides the sensitivity matrix, and the quadratic cost-function is minimized using Gauss–Newton method. The identifiability and the error on the retrieved parameters are studied in the framework of BLUE (Best Linear Unbiased Linear Estimator). The algorithm is tested on two synthetic datasets, and on real data obtained in a zircon crystal from early Fish Canyon tuff eruption. Reconstructed temperature ranges and cooling duration are in good agreement with available petrological interpretation.

Publié le :
DOI : 10.5802/msia.41
Classification : 65M32, 86-08, 86A22
Keywords: One phase Stefan problem, inverse problem, accessory minerals, crystal growth

Jérôme J. Fehrenbach 1 ; Oleg E. Melnik 2 ; Anastassia Y. Borisova 3

1 Institut de Mathématiques de Toulouse UMR 5219, CNRS, Université de Toulouse, F-31062 Toulouse Cedex 9, France
2 Institut des Sciences de la Terre, Université Grenoble Alpes, CS 40700 F-38058 Grenoble, Cedex 9, France & Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
3 Géosciences Environnement Toulouse, GET, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, 31400 Toulouse, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{MSIA_2025__14_1_1_0,
     author = {J\'er\^ome J. Fehrenbach and Oleg E. Melnik and Anastassia Y. Borisova},
     title = {Inverse {Stefan} problem from indirect measurements, application to zircon crystallization},
     journal = {MathematicS In Action},
     pages = {1--21},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {14},
     number = {1},
     year = {2025},
     doi = {10.5802/msia.41},
     language = {en},
     url = {https://msia.centre-mersenne.org/articles/10.5802/msia.41/}
}
TY  - JOUR
AU  - Jérôme J. Fehrenbach
AU  - Oleg E. Melnik
AU  - Anastassia Y. Borisova
TI  - Inverse Stefan problem from indirect measurements, application to zircon crystallization
JO  - MathematicS In Action
PY  - 2025
SP  - 1
EP  - 21
VL  - 14
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://msia.centre-mersenne.org/articles/10.5802/msia.41/
DO  - 10.5802/msia.41
LA  - en
ID  - MSIA_2025__14_1_1_0
ER  - 
%0 Journal Article
%A Jérôme J. Fehrenbach
%A Oleg E. Melnik
%A Anastassia Y. Borisova
%T Inverse Stefan problem from indirect measurements, application to zircon crystallization
%J MathematicS In Action
%D 2025
%P 1-21
%V 14
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U https://msia.centre-mersenne.org/articles/10.5802/msia.41/
%R 10.5802/msia.41
%G en
%F MSIA_2025__14_1_1_0
Jérôme J. Fehrenbach; Oleg E. Melnik; Anastassia Y. Borisova. Inverse Stefan problem from indirect measurements, application to zircon crystallization. MathematicS In Action, Tome 14 (2025) no. 1, pp. 1-21. doi: 10.5802/msia.41

[1] https://perso.math.univ-toulouse.fr/fehren/software/

[2] https://zircocalc.math.univ-toulouse.fr/

[3] Ilya Bindeman; Oleg Melnik Zircon survival, rebirth and recycling during crustal melting, magma crystallization, and mixing based on numerical modelling, J. Petrol., Volume 57 (2016) no. 3, pp. 437-460 | DOI

[4] Karoline Brückel; Craig Lundstrom; Mickael Ackerson; Christopher Campe Testing the Limits of Ti-in-Quartz Thermometry and Diffusion Modelling to Determine the Thermal History of the Fish Canyon Tuff, J. Petrol., Volume 64 (2023) no. 12, egad082 (Accessed 2024-01-07) | DOI

[5] Abdellatif El Badia; F. Moutazaim A one-phase inverse Stefan problem, Inverse Probl., Volume 15 (1999) no. 6, pp. 1507-1522 | Zbl | MR

[6] Heinz W. Engl; Martin Hanke; Andreas Neubauer Regularization of inverse problems, Mathematics and its Applications (Dordrecht), 375, Kluwer Academic Publishers, 1996 | DOI | MR | Zbl

[7] Nataliya Gol’dman Inverse Stefan Problems, Mathematics and its Applications (Dordrecht), 412, Springer, 2012 | MR

[8] Eugenia Kalnay Atmospheric modeling, data assimilation and predictability, Cambridge University Press, 2003

[9] Andreas Kirsch An introduction to the mathematical theory of inverse problems, Applied Mathematical Sciences, 120, Springer, 2011 | MR | Zbl

[10] François-Xavier Le Dimet; Olivier Talagrand Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, Volume 38 (1986) no. 2, pp. 97-110 | DOI

[11] Jacques-Louis Lions Optimal control of systems governed by partial differential equations, Grundlehren der Mathematischen Wissenschaften, 170, Springer, 1971 | DOI | MR | Zbl

[12] Dong Liu; Jorge Nocedal On the limited memory BFGS method for large scale optimization, Math. Program., Ser. B, Volume 45 (1989) no. 3, pp. 503-528 | Zbl | MR

[13] Oleg Melnik; Ilya Bindeman Modeling of trace elemental zoning patterns in accessory minerals with emphasis on the origin of micrometer-scale oscillatory zoning in zircon, Am. Mineral., Volume 103 (2018) no. 3, pp. 355-368 (Accessed 2023-01-31) | DOI

[14] Oleg Melnik; Ivan Utkin; Ilya Bindeman Magma Chamber Formation by Dike Accretion and Crustal Melting: 2D Thermo-Compositional Model With Emphasis on Eruptions and Implication for Zircon Records, J. Geophys. Res. Solid Earth, Volume 126 (2021) no. 12, e2021JB023008 | DOI

[15] Jorge Nocedal; Stephen Wright Numerical optimization, Springer Series in Operations Research, Springer, 1999 | DOI | MR | Zbl

[16] Rembert Reemtsen; Andreas Kirsch A method for the numerical solution of the one-dimensional inverse Stefan problem, Numer. Math., Volume 45 (1984), pp. 253-273 | DOI | Zbl

[17] Daniela Rubatto; Jörg Hermann Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks, Chem. Geol., Volume 241 (2007) no. 1, pp. 38-61 (Accessed 2024-01-24) | DOI

[18] Olivier Talagrand Assimilation of observations, an introduction (special issue data assimilation in meteology and oceanography: Theory and practice), J. Meteorol. Soc. Jpn. Ser. II, Volume 75 (1997) no. 1B, pp. 191-209 | DOI

[19] Sifan Wang; Paris Perdikaris Deep learning of free boundary and Stefan problems, J. Comput. Phys., Volume 428 (2021), 109914, 24 pages | MR | Zbl

Cité par Sources :