Modeling actin-myosin interaction: beyond the Huxley–Hill framework
MathematicS In Action, Tome 12 (2023) no. 1, pp. 191-226.

Contractile force in muscle tissue is produced by myosin molecular motors that bind and pull on specific sites located on surrounding actin filaments. The classical framework to model this active system was set by the landmark works of A.F. Huxley and T.L. Hill. This framework is built on the central assumption that the relevant quantity for the model parametrization is the myosin head reference position. In this paper, we present an alternative formulation that allows to take into account the current position of the myosin head as the main model parameter.

The actin-myosin system is described as a Markov process combining Langevin drift-diffusion and Poisson jumps dynamics. We show that the corresponding system of Stochastic Differential Equation is well-posed and derive its Partial Differential Equation analog in order to obtain the thermodynamic balance laws. We finally show that by applying standard elimination procedures, a modified version of the original Huxley–Hill framework can be obtained as a reduced version of our model. Theoretical results are supported by numerical simulations where the model outputs are compared to benchmark experimental data.

Publié le :
DOI : 10.5802/msia.38
Classification : 00X99
Mots clés : Applied mathematics, Applied probability, Muscle contraction, Thermodynamics, Molecular motors, Jump-diffusion process, Poisson random measures
Louis-Pierre Chaintron 1 ; Matthieu Caruel 2 ; François Kimmig 3

1 DMA, École normale supérieure, Université PSL, CNRS, 75005 Paris, France and Inria, France; LMS, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France
2 Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, 94010 Créteil, France
3 Inria, France; LMS, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{MSIA_2023__12_1_191_0,
     author = {Louis-Pierre Chaintron and Matthieu Caruel and Fran\c{c}ois Kimmig},
     title = {Modeling actin-myosin interaction: beyond the {Huxley{\textendash}Hill} framework},
     journal = {MathematicS In Action},
     pages = {191--226},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {12},
     number = {1},
     year = {2023},
     doi = {10.5802/msia.38},
     language = {en},
     url = {https://msia.centre-mersenne.org/articles/10.5802/msia.38/}
}
TY  - JOUR
AU  - Louis-Pierre Chaintron
AU  - Matthieu Caruel
AU  - François Kimmig
TI  - Modeling actin-myosin interaction: beyond the Huxley–Hill framework
JO  - MathematicS In Action
PY  - 2023
SP  - 191
EP  - 226
VL  - 12
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://msia.centre-mersenne.org/articles/10.5802/msia.38/
DO  - 10.5802/msia.38
LA  - en
ID  - MSIA_2023__12_1_191_0
ER  - 
%0 Journal Article
%A Louis-Pierre Chaintron
%A Matthieu Caruel
%A François Kimmig
%T Modeling actin-myosin interaction: beyond the Huxley–Hill framework
%J MathematicS In Action
%D 2023
%P 191-226
%V 12
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U https://msia.centre-mersenne.org/articles/10.5802/msia.38/
%R 10.5802/msia.38
%G en
%F MSIA_2023__12_1_191_0
Louis-Pierre Chaintron; Matthieu Caruel; François Kimmig. Modeling actin-myosin interaction: beyond the Huxley–Hill framework. MathematicS In Action, Tome 12 (2023) no. 1, pp. 191-226. doi : 10.5802/msia.38. https://msia.centre-mersenne.org/articles/10.5802/msia.38/

[1] David Applebaum Lévy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, 2009 | DOI

[2] Florian Blanc; Tatiana Isabet; Hannah Benisty; H. Lee Sweeney; Marco Cecchini; Anne Houdusse An intermediate along the recovery stroke of myosin VI revealed by X-ray crystallography and molecular dynamics, Proc. Natl. Acad. Sci. USA, Volume 115 (2018) no. 24, pp. 6213-6218 (Accessed 2021-09-16) | DOI

[3] Marco Caremani; Luca Melli; Mario Dolfi; Vincenzo Lombardi; Marco Linari The working stroke of the myosin II motor in muscle is not tightly coupled to release of orthophosphate from its active site, J. Physiol., Volume 591 (2013) no. 20, pp. 5187-5205 | DOI

[4] Marco Caremani; Luca Melli; Mario Dolfi; Vincenzo Lombardi; Marco Linari Force and number of myosin motors during muscle shortening and the coupling with the release of the ATP hydrolysis products, J. Physiol., Volume 593 (2015) no. 15, pp. 3313-3332 | DOI

[5] Marco Caremani; Francesca Pinzauti; Massimo Reconditi; Gabriella Piazzesi; Ger J. M. Stienen; Vincenzo Lombardi; Marco Linari Size and speed of the working stroke of cardiac myosin in situ, Proc. Natl. Acad. Sci. USA, Volume 113 (2016) no. 13, pp. 3675-3680 | DOI

[6] Matthieu Caruel; Philippe Moireau; Dominique Chapelle Stochastic modeling of chemical-mechanical coupling in striated muscles, Biomech. Model. Mechanobiol., Volume 18 (2019) no. 3, pp. 563-587 | DOI

[7] Pierre Del Moral; Spiridon Penev Stochastic Processes: From Applications to Theory, Chapman & Hall/CRC Texts in Statistical Science Series, Chapman & Hall/CRC, 2017 | DOI | Zbl

[8] T. A. J. Duke Molecular Model of Muscle Contraction, Proc. Natl. Acad. Sci. USA, Volume 96 (1999) no. 6, pp. 2770-2775 (Accessed 2021-09-16) | DOI

[9] K. A. P. Edman Double-Hyperbolic Force-Velocity Relation in Frog Muscle Fibres, J. Physiol., Volume 404 (1988) no. 1, pp. 301-321 | DOI

[10] K. A. P. Edman; N. A. Curtin Synchronous Oscillations of Length and Stiffness during Loaded Shortening of Frog Muscle Fibres, J. Physiol., Volume 534 (2001) no. 265, pp. 553-563 | DOI

[11] E. Eisenberg; Terrell L. Hill A cross-bridge model of muscle contraction, Prog. Biophys. Mol. Biol., Volume 33 (1978) no. 1, pp. 55-82

[12] E. Eisenberg; Terrell L. Hill; Y. Chen Cross-bridge model of muscle contraction. Quantitative analysis, Biophys. J., Volume 29 (1980) no. 2, pp. 195-227 | DOI

[13] H. L. Granzier; A. Mattiazzi; G. H. Pollack Sarcomere dynamics during isotonic velocity transients in single frog muscle fibers, Am. J. Physiol. Cell Physiol., Volume 259 (1990) no. 2, p. C266-C278 | DOI

[14] T. Guérin; J. Prost; J.-F. Joanny Dynamical behavior of molecular motor assemblies in the rigid and crossbridge models, Eur. Phys. J. E, Volume 34 (2011) no. 6, p. 667-21 | DOI

[15] Archibald V. Hill The heat of shortening and the dynamic constants of muscle, Proc. R. Soc. Lond., Ser. B, Volume 126 (1938) no. 843, pp. 136-195

[16] Terrell L. Hill Theoretical formalism for the sliding filament model of contraction of striated muscle Part I, Prog. Biophys. Mol. Biol., Volume 28 (1974), pp. 267-340 | DOI

[17] Terrell L. Hill Theoretical formalism for the sliding filament model of contraction of striated muscle Part II, Prog. Biophys. Mol. Biol., Volume 29 (1976), pp. 105-159 | DOI

[18] Terrell L. Hill Free Energy Transduction in Biology, Academic Press Inc., 1977

[19] Anne Houdusse; H. Lee Sweeney How myosin generates force on actin filaments, Trends Biochem. Sci., Volume 41 (2016) no. 12, pp. 989-997 (Accessed 2021-09-16) | DOI

[20] A. F. Huxley Muscle structure and theories of contraction, Prog. Biophys. Biophys. Chem., Volume 7 (1957), pp. 255-318 | DOI

[21] A. F. Huxley; R. M. Simmons Proposed mechanism of force generation in striated muscle, Nature, Volume 233 (1971) no. 5321, pp. 533-538 | DOI

[22] Nobuyuki Ikeda; Shinzo Watanabe Stochastic differential equations and diffusion processes, Elsevier, 2014

[23] Frank Jülicher; Armand Ajdari; Jacques Prost Modeling molecular motors, Rev. Mod. Phys., Volume 69 (1997) no. 4, pp. 1269-1282 (Accessed 2021-09-16) | DOI

[24] François Kimmig; Maruel Caruel Hierarchical modeling of force generation in cardiac muscle, Biomech. Model. Mechanobiol., Volume 19 (2020) no. 6, pp. 2567-2601 | DOI

[25] François Kimmig; Maruel Caruel Hierarchical modeling of force generation in cardiac muscle, Biomech. Model. Mechanobiol., Volume 19 (2020), pp. 2567-2601 | DOI

[26] Tomoyoshi Kobayashi; Lei Jin; Pieter P. de Tombe Cardiac thin filament regulation, Pflügers Arch., Volume 457 (2008) no. 1, pp. 37-46 | DOI

[27] R. W. Lymn; E. W. Taylor Mechanism of adenosine triphosphate hydrolysis by actomyosin, Biochemistry, Volume 10 (1971) no. 25, pp. 4617-4624 (PMID: 4258719) | arXiv | DOI

[28] Alf Månsson Actomyosin-ADP states, interhead cooperativity, and the force-velocity relation of skeletal muscle, Biophys. J., Volume 98 (2010) no. 7, pp. 1237-1246 | DOI

[29] Alf Månsson Actomyosin based contraction: one mechanokinetic model from single molecules to muscle?, J. Muscle Res. Cell Motil., Volume 37 (2016) no. 6, pp. 181-194 (Accessed 2021-09-16) | DOI

[30] Alf Månsson Comparing Models with One versus Multiple Myosin-Binding Sites per Actin Target Zone: The Power of Simplicity, J. Gen. Physiol., Volume 151 (2019) no. 4, pp. 578-592 | DOI

[31] Alf Månsson Hypothesis: single actomyosin properties account for ensemble behavior in active muscle shortening and isometric contraction, Int. J. Mol. Sci., Volume 21 (2020) no. 21, p. 8399 | DOI

[32] S. Mischler An introduction to evolution PDEs, 2020 (Academic master 2nd year)

[33] Benoît Perthame Parabolic equations in biology. Growth, reaction, movement and diffusion (Lecture Notes on Mathematical Modelling in the Life Sciences), Springer, 2015 | Zbl

[34] Irene Pertici; Lorenzo Bongini; Luca Melli; Giulio Bianchi; Luca Salvi; Giulia Falorsi; Caterina Squarci; Tamás Bozó; Dan Cojoc; Miklós S. Z. Kellermayer; Vincenzo Lombardi; Pasquale Bianco A myosin II nanomachine mimicking the striated muscle, Nat. Commun., Volume 9 (2018) no. 1, p. 3532 | DOI

[35] Gabriella Piazzesi; Vincenzo Lombardi A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle, Biophys. J., Volume 68 (1995) no. 5, pp. 1966-1979 | DOI

[36] Francesca Pinzauti; Irene Pertici; Massimo Reconditi; Theyencheri Narayanan; Ger J. M. Stienen; Gabriella Piazzesi; Vincenzo Lombardi; Marco Linari; Marco Caremani The force and stiffness of myosin motors in the isometric twitch of a cardiac trabecula and the effect of the extracellular calcium concentration, J. Physiol., Volume 596 (2018) no. 13, pp. 2581-2596 | DOI

[37] Francesco Regazzoni; Luca Dedè; Alfio Quarteroni Biophysically detailed mathematical models of multiscale cardiac active mechanics, PLoS Comput. Biol., Volume 16 (2020) no. 10, e1008294

[38] Daniel Revuz; Marc Yor Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften, 293, Springer, 2013

[39] D. A. Smith; M. A. Geeves Strain-dependent cross-bridge cycle for muscle, Biophys. J., Volume 69 (1995) no. 2, pp. 524-537 | DOI

[40] D. A. Smith; M. A. Geeves Strain-dependent cross-bridge cycle for muscle. II. Steady-state behavior, Biophys. J., Volume 69 (1995) no. 2, pp. 538-552 | DOI

[41] D. A. Smith; M. A. Geeves; J. Sleep; S. M. Mijailovich Towards a unified theory of muscle contraction. I: Foundations, Ann. Biomed. Eng., Volume 36 (2008) no. 10, pp. 1624-1640 (Accessed 2021-09-16) | DOI

[42] D. A. Smith; S. M. Mijailovich Toward a unified theory of muscle contraction. II: predictions with the mean-field approximation, Ann. Biomed. Eng., Volume 36 (2008) no. 8, pp. 1353-1371 (Accessed 2021-09-16) | DOI

[43] H. Sugi; T. Tsuchiya Isotonic velocity transients in frog muscle fibres following quick changes in load, J. Physiol., Volume 319 (1981), pp. 219-238 | DOI

[44] Peter Tankov Financial modelling with jump processes, Chapman & Hall/CRC, 2003 | DOI

Cité par Sources :