Modeling vaccine degradation
MathematicS In Action, Tome 13 (2024) no. 1, pp. 33-47.

This expository paper is an introduction to the mathematical modelling of vaccine degradation and to its industrial applications, including the study of vaccine stability and the so called “WHO last mile” program.

Publié le :
DOI : 10.5802/msia.40
Classification : 00X99
Mots clés : Modelling, Vaccine, Chemistry
Olivier Brass 1 ; Emmanuel Grenier 2

1 Sanofi Pasteur, 69280 Marcy-l’Etoile, France
2 Unité de Mathématiques Pures et Appliquées, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69007 Lyon, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{MSIA_2024__13_1_33_0,
     author = {Olivier Brass and Emmanuel Grenier},
     title = {Modeling vaccine degradation},
     journal = {MathematicS In Action},
     pages = {33--47},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {13},
     number = {1},
     year = {2024},
     doi = {10.5802/msia.40},
     language = {en},
     url = {https://msia.centre-mersenne.org/articles/10.5802/msia.40/}
}
TY  - JOUR
AU  - Olivier Brass
AU  - Emmanuel Grenier
TI  - Modeling vaccine degradation
JO  - MathematicS In Action
PY  - 2024
SP  - 33
EP  - 47
VL  - 13
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://msia.centre-mersenne.org/articles/10.5802/msia.40/
DO  - 10.5802/msia.40
LA  - en
ID  - MSIA_2024__13_1_33_0
ER  - 
%0 Journal Article
%A Olivier Brass
%A Emmanuel Grenier
%T Modeling vaccine degradation
%J MathematicS In Action
%D 2024
%P 33-47
%V 13
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U https://msia.centre-mersenne.org/articles/10.5802/msia.40/
%R 10.5802/msia.40
%G en
%F MSIA_2024__13_1_33_0
Olivier Brass; Emmanuel Grenier. Modeling vaccine degradation. MathematicS In Action, Tome 13 (2024) no. 1, pp. 33-47. doi : 10.5802/msia.40. https://msia.centre-mersenne.org/articles/10.5802/msia.40/

[1] Evaluation of stability data (1996) (Technical report)

[2] Stability evaluation of vaccines for use in a CTC (2014) (Technical report)

[3] Guidelines on the stability evaluation of vaccines for use under extended controlled temperature conditions. Extended Controlled Temperature Chain (ECTC) Program (2015) (Technical report)

[4] Method for determining at a current time point a preservation state of one product and computer system for carrying out said method (2020) (Technical report)

[5] D. Braess; H. Dette Optimal discriminating designs for several competing regression models, Ann. Stat., Volume 41 (2013), pp. 897-922 | DOI | Zbl

[6] O. Brass; P. Claudy; E. Grenier Reliable stability prediction to manage research and marketed vaccines and pharmaceutical products. “Avoid any doubt for the end-user of vaccine compliance at time of administration”, Int. J. Pharm., Volume 618 (2022), 12604 | DOI

[7] K. P. Burnham; D. R. Anderson Multimodel inference, understanding AIC and BIC in model selection, Sociol. Methods Res., Volume 33 (2004) no. 261-304, pp. 261-304 | DOI

[8] A. Galazka et al. Thermostability of vaccines (1996) (Technical report)

[9] C. Morgan et al. Immunizations, vaccines and biologicals immunization practice advisory committee (IPAC) (2017) (Technical report)

[10] A. Morris et al. Fitting Neurological Protein Aggregation Kinetic Data via a 2 Steps, Minimal Ockham’s Razor Model, The Finke Watzky Mechanism of Nucleation Followed by Autocatalytic Surface Growth., Biochemistry, Volume 47 (2008) no. 8, pp. 2413-2427 | DOI

[11] D. Pecar; A. Gorsek Alkaline Hydrolysis of an Aromatic Ester: Kinetic Studies Using Thermal Power Profiles, Chem. Ing. Technol., Volume 34 (2011) no. 12, pp. 2033-2036

[12] E. G. Proutt; F. C. Tompkins The thermal decomposition of potassium permanganate, Trans. Faraday Soc., Volume 40 (1944), pp. 488-498 | DOI

[13] B. Roduit et al. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points, Thermochim. Acta, Volume 579 (2014) no. 10, pp. 31-39 | DOI

[14] J. Sestak; G. Berggren Study of the kinetics of the mechanism of solid-state reactions at increasing temperature, Thermochim. Acta, Volume 3 (1971), pp. 1-13 | DOI

[15] J. Vanlier; C. A. Tiemann; P. A. J. Hilbers; N. A. W. van Riel A Bayesian approach to targeted experiment design, Bioinformatics, Volume 28 (2012) no. 8, pp. 1136-1142 | DOI

[16] K. C. Waterman The Application of the Accelerated Stability Assessment Program (ASAP) to Quality by Design (QbD) for Drug Product Stability., AAPS PharmacoSciTech, Volume 12 (2011) no. 3, pp. 932-937 | DOI

Cité par Sources :