Numerical Modeling of the Intracranial Pressure using Windkessel Models
MathematicS In Action, Tome 8 (2017) no. 1, pp. 9-25.

The intracranial pressure (ICP) is an important factor in the proper functioning of the brain. This pressure is needed to be constantly regulated, since an abnormal elevation can be quite dangerous. In this article, we develop some numerical tools to better understand the regulation of this pressure. In particular, as it is impossible to measure the ICP in a non-invasive way, these numerical tools can allow to estimate values of the ICP. In addition, we propose to compute the dynamics of the cerebrospinal fluid (CSF), taking into account the connected environment of the skull and the arterio-venous flows. A computational fluid dynamics model in two dimensions is developed for the cerebrospinal fluid system, with Windkessel type boundary conditions. This model shows that the dynamics can impact the distribution of the CSF in the different compartments of the cerebrospinal system.

Publié le :
DOI : 10.5802/msia.11
Classification : 76Z05
Mots clés : Intracranial pressure, Stokes equations, Finite element method, Windkessel models.
Simon Garnotel 1 ; Stéphanie Salmon 2 ; Olivier Balédent 3

1 Laboratoire BioFlowImage, Université de Picardie Jules Verne, France
2 Laboratoire de Mathématiques de Reims, Université de Reims Champagne-Ardenne, France
3 Unité de Traitement de l’Image, CHU Amiens-Picardie, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{MSIA_2017__8_1_9_0,
     author = {Simon Garnotel and St\'ephanie Salmon and Olivier Bal\'edent},
     title = {Numerical {Modeling} of the {Intracranial} {Pressure} using {Windkessel} {Models}},
     journal = {MathematicS In Action},
     pages = {9--25},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {8},
     number = {1},
     year = {2017},
     doi = {10.5802/msia.11},
     mrnumber = {3758869},
     zbl = {1405.76073},
     language = {en},
     url = {https://msia.centre-mersenne.org/articles/10.5802/msia.11/}
}
TY  - JOUR
AU  - Simon Garnotel
AU  - Stéphanie Salmon
AU  - Olivier Balédent
TI  - Numerical Modeling of the Intracranial Pressure using Windkessel Models
JO  - MathematicS In Action
PY  - 2017
SP  - 9
EP  - 25
VL  - 8
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://msia.centre-mersenne.org/articles/10.5802/msia.11/
DO  - 10.5802/msia.11
LA  - en
ID  - MSIA_2017__8_1_9_0
ER  - 
%0 Journal Article
%A Simon Garnotel
%A Stéphanie Salmon
%A Olivier Balédent
%T Numerical Modeling of the Intracranial Pressure using Windkessel Models
%J MathematicS In Action
%D 2017
%P 9-25
%V 8
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U https://msia.centre-mersenne.org/articles/10.5802/msia.11/
%R 10.5802/msia.11
%G en
%F MSIA_2017__8_1_9_0
Simon Garnotel; Stéphanie Salmon; Olivier Balédent. Numerical Modeling of the Intracranial Pressure using Windkessel Models. MathematicS In Action, Tome 8 (2017) no. 1, pp. 9-25. doi : 10.5802/msia.11. https://msia.centre-mersenne.org/articles/10.5802/msia.11/

[1] M.J. Albeck; S.E. Børgesen; F. Gjerris; J.F. Schmidt; P.S. Sørensen Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects, J. Neurosurg., Volume 74 (1991) no. 4, pp. 597-600 | DOI

[2] N. Alperin; M. Mazda; T. Lichtor; S.H. Lee From cerebrospinal fluid pulsation to noninvasive intracranial compliance and pressure measured by MRI flow studies, Curr. Med. Imaging Rev., Volume 2 (2006) no. 1, pp. 117-129 | DOI

[3] O. Balédent; C. Gondry-Jouet; M.E. Meyer; G. De Marco; D. Le Gars; M.C. Henry-Feugeas; I. Idy-Peretti Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus, Invest. Radiol., Volume 39 (2004) no. 1, pp. 45-55 | DOI

[4] O. Balédent; I. Idy-Peretti; MC Henry-Feugeas Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation, Invest. Radiol., Volume 36 (2001) no. 7, pp. 368-377 | DOI

[5] R. Bouzerar; M. Czosnyka; Z. Czosnyka; O. Balédent Physical Phantom of Craniospinal Hydrodynamics, Springer, 2012 | DOI

[6] J. Cahouet; J.-P. Chabard Some fast 3D finite element solvers for the generalized Stokes problem, International Journal for Numerical Methods in Fluids, Volume 8 (1988) no. 8, pp. 869-895 | DOI | Zbl

[7] E.R. Cardoso; J.O. Rowan; S. Galbraith Analysis of the cerebrospinal fluid pulse wave in intracranial pressure, J. Neurosurg., Volume 59 (1983) no. 5, pp. 817-821 | DOI

[8] M. Czosnyka; J.D. Pickard Monitoring and interpretation of intracranial pressure, J. Neurol. Neurosurg. Psychiatry, Volume 75 (2004) no. 6, pp. 813-821 | DOI

[9] J. Fouchet-Incaux; C. Grandmont; S. Martin Numerical Stability of Coupling Schemes in the 3D/0D Modelling of Air Flows and Blood Flows, HAL-01095960v1 (2015) | Zbl

[10] S. Garnotel Modélisation numérique de la pression intracrâcranienne via les écoulements du liquide cérébrospinal et du sang mesurés par IRM de flux, UPJV (2016) (Ph. D. Thesis)

[11] S. Garnotel; S. Salmon; O. Balédent Numerical Cerebrospinal System Modeling in Fluid- Structure Interaction, HAL-01427455 (2017)

[12] D. Greitz Radiological assessment of hydrocephalus: New theories and implications for therapy, Neurosurg. Rev., Volume 27 (2004) no. 3, pp. 145-165 | DOI

[13] F. Hecht New development in Freefem++, J. Numer. Math., Volume 20 (2012) no. 3-4, pp. 251-265 | DOI | MR | Zbl

[14] A.A. Linninger; M. Xenos; D.C. Zhu; M.R. Somayaji; S. Kondapalli; R.D. Penn Cerebrospinal fluid flow in the normal and hydrocephalic human brain, IEEE Trans. Biomed. Eng., Volume 54 (2007) no. 2, pp. 291-302 | DOI

[15] A. Marmarou; M. Bergsneider; N. Relkin; P. Klinge; P. Black Development of guidelines for idiopathic normal-pressure hydrocephalus: introduction, Neurosurgery, Volume 57 (2005) no. 3, pp. S2-1 | DOI

[16] A. Marmarou; K. Shulman; J. LaMorgese Compartmental Analysis of Compliance and Outflow Resistance of the Cerebrospinal Fluid System, J. Neurosurg., Volume 43 (1975), pp. 523-534 | DOI

[17] A. Marmarou; K. Shulman; R.M. Rosende A Nonlinear Analysis of the Cerebrospinal Fluid System and Intracranial Pressure Dynamics, J. Neurosurg., Volume 48 (1978) no. 3, pp. 332-344 | DOI

[18] M. McAuliffe Medical image processing, analysis, and visualization (MIPAV), National Institutes of Health (2009)

[19] G. Pagé; S. Fall; R. Bouzerar; A. Heintz; S. Delepierre; O. Balédent In-vitro assessment of high resolution PC-MRI, ECR 2015 (2015)

[20] A. Quarteroni Numerical Models for Differential Problems, 2, Springer, 2009 | MR

[21] S. Qvarlander; B. Lundkvist; L.-O D. Koskinen; J. Malm; A. Eklund Pulsatility in CSF dynamics: pathophysiology of idiopathic normal pressure hydrocephalus, J. Neurol. Neurosurg. Psychiatry, Volume 84 (2013) no. 7, pp. 735-741 | DOI

[22] J.E. Roberts; J.M. Thomas Mixed and hybrid methods, Handb. Numer. Anal., Volume 2 (1991), pp. 523-639

[23] K. Sagawa; R.K. Lie; J. Schaefer Translation of Otto frank’s paper “Die Grundform des arteriellen Pulses” Zeitschrift für biologie 37: 483–526 (1899), J. Mol. Cell. Cardiol, Volume 22 (1990) no. 3, pp. 253-254 | DOI

[24] S. El Sankari; C. Gondry-Jouet; A. Fichten; O. Godefroy; J-M. Serot; H. Deramond; M.E. Meyer; O. Balédent Cerebrospinal fluid and blood flow in mild cognitive impairment and Alzheimer’s disease: a differential diagnosis from idiopathic normal pressure hydrocephalus, Fluids Barriers CNS, Volume 8 (2011) no. 1, 12 pages | DOI

[25] M. Ursino; C.A. Lodi A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics, J. Appl. Physiol., Volume 82 (1997) no. 4, pp. 1256-1269 | DOI

[26] I.E. Vignon-Clementel; C. A. Figueroa; K. E. Jansen; C. A. Taylor Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries, Computer Methods in Applied Mechanics and Engineering, Volume 195 (2006) no. 29–32, pp. 3776 -3796 http://www.sciencedirect.com/science/article/pii/S0045782505002586 | DOI | MR | Zbl

Cité par Sources :