We describe an algorithm for the solution of a statistical/average atom non-local-thermodynamic-equilibrium atomic kinetics model of steady-state plasmas in which all one- and two-electron processes are included in full generality.
@article{MSIA_2022__11_1_259_0, author = {Brian G. Wilson and Jean-Christophe Pain}, title = {Exact {Solution} of a {Fully} {General} {Non-Local-Thermodynamic-Equilibrium} {Two-Level} {Atom}}, journal = {MathematicS In Action}, pages = {259--267}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {11}, number = {1}, year = {2022}, doi = {10.5802/msia.27}, language = {en}, url = {https://msia.centre-mersenne.org/articles/10.5802/msia.27/} }
TY - JOUR AU - Brian G. Wilson AU - Jean-Christophe Pain TI - Exact Solution of a Fully General Non-Local-Thermodynamic-Equilibrium Two-Level Atom JO - MathematicS In Action PY - 2022 SP - 259 EP - 267 VL - 11 IS - 1 PB - Société de Mathématiques Appliquées et Industrielles UR - https://msia.centre-mersenne.org/articles/10.5802/msia.27/ DO - 10.5802/msia.27 LA - en ID - MSIA_2022__11_1_259_0 ER -
%0 Journal Article %A Brian G. Wilson %A Jean-Christophe Pain %T Exact Solution of a Fully General Non-Local-Thermodynamic-Equilibrium Two-Level Atom %J MathematicS In Action %D 2022 %P 259-267 %V 11 %N 1 %I Société de Mathématiques Appliquées et Industrielles %U https://msia.centre-mersenne.org/articles/10.5802/msia.27/ %R 10.5802/msia.27 %G en %F MSIA_2022__11_1_259_0
Brian G. Wilson; Jean-Christophe Pain. Exact Solution of a Fully General Non-Local-Thermodynamic-Equilibrium Two-Level Atom. MathematicS In Action, Special issue Maths and Industry, Volume 11 (2022) no. 1, pp. 259-267. doi : 10.5802/msia.27. https://msia.centre-mersenne.org/articles/10.5802/msia.27/
[1] Mathematica, Version 12.3.1, 2021 (Wolfram Research, Inc., Champaign, IL, https://www.wolfram.com/mathematica)
[2] NLTE ionization and energy balance in high-Z laser-plasmas including two-electron transitions, J. Quant. Spectrosc. Radiat. Transfer, Volume 65 (2000), pp. 1-13 | DOI
[3] Optical Resonance and Two-level Atoms, Dover books on physics and chemistry, Dover Publications, 1987
[4] A Two-Level Atom: General Setup, in Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case, Springer, 2009, pp. 151-182
[5] Effective Boltzmann law and Prigogine theorem of minimum entropy production in highly charged ion plasmas, J. Quant. Spectrosc. Radiat. Transfer, Volume 99 (2006), pp. 75-83 | DOI
[6] A Coherent Derivation of an Average Ion Model Including the Evolution of Correlations Between Different Shells, MathS In Action, Volume 6 (2013), pp. 1-14 | DOI | Numdam | MR | Zbl
[7] Dielectronic recombination in Au ionization temperature calculations, J. Quant. Spectrosc. Radiat. Transfer, Volume 81 (2001), pp. 85-95 | DOI
[8] Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal), Ph. D. Thesis, Mathematical Institute, University of Innsbruck, Austria (1965) English translation in J. of Symb. Comput. (Special Issue on Logic, Mathematics, and Computer Science: Interactions) 41:475-511, 2006
[9] Gröbner Bases and Systems Theory, Multidimensional Syst. Signal Process., Volume 12 (2001), pp. 223-251 | DOI | Zbl
[10] Groebner basis, Scholarpedia, Volume 5 (2010), pp. 7763-7783 | DOI
[11] Radiation-dependent ionization model for laser-created plasmas, Phys. Fluids B, Volume 5 (1993), pp. 4191-4206 | DOI
[12] An Application of Gröbner Basis in Differential Equations of Physics, Z. Naturforsch. A., Volume 68 (2013), pp. 646-650 | DOI
[13] Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations, Advances in Cryptology — EUROCRYPT 2000 (2000), pp. 392-407 | DOI | Zbl
[14] Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer, 2007
[15] Average-ion level-population correlations in off-equilibrium plasmas, Phys. Rev. E, Volume 57 (1998), pp. 1017-1028 | DOI
[16] Onsager symmetry of the average ion near equilibrium, J. Quant. Spectrosc. Radiat. Transfer, Volume 71 (2001), pp. 295-303 | DOI
[17] About the link between the detailed description of transitions in an ion and the average-ion models, Commun. Math. Sci., Volume 7 (2009), pp. 471-488 | MR | Zbl
[18] Calculation of the time-dependent excitation and ionization in a laser-produced plasma, J. Phys. B: At. Mol. Opt. Phys., Volume 25 (1992), pp. 2745-2762 | DOI
[19] The Jaynes-Cummings model of a two-level atom in a single-mode para-Bose cavity field, Sci. Rep., Volume 11 (2021), pp. 2045-2322 | DOI
[20] A new efficient algorithm for computing Gröbner bases, J. Pure Appl. Algebra, Volume 139 (1999), pp. 61-88 | DOI | Zbl
[21] The Feynman Lectures on Physics, 3, Addison-Wesley Publishing Group, 1965
[22] Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE, Volume 51 (1964), pp. 89-109 | DOI
[23] Concrete Abstract Algebra: From Numbers to Gröbner Bases, Cambridge University Press, 2003
[24] Fluctuations from the nonequilibrium steady state, Rev. Mod. Phys., Volume 32 (1960), pp. 25-64 | DOI | Zbl
[25] XSNQ-U: a non-LTE emission and absorption coefficient subroutine (1977) no. Report UCRL-52276 (Technical report)
[26] Simple transcendental expressions for the roots of cubic equations, Am. J. Phys., Volume 52 (1984), pp. 269-270 | DOI | MR
[27] Near-LTE Linear Response Calculations with a Collisional-Radiative Model for He-like Al Ions, Phys. Rev. Lett., Volume 81 (1998), pp. 814-817 | DOI
[28] Two-level-atom excitation probability for single- and -photon wave packets, Phys. Rev. A, Volume 96 (2017), p. 033817 | DOI
[29] A History of Algebra, Springer, 1985 | DOI
Cited by Sources: