The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses can be modeled by the Bloch-Torrey partial differential equation (PDE). The associated diffusion MRI signal is the spatial integral of the solution of the Bloch-Torrey PDE. In addition to the signal, the time-dependent apparent diffusion coefficient (ADC) can be obtained from the solution of another partial differential equation, called the HADC model, which was obtained using homogenization techniques.
In this paper, we analyze the Bloch-Torrey PDE and the HADC model in the context of geometrical deformations starting from a canonical configuration. To be more concrete, we focused on two analytically defined deformations: bending and twisting. We derived asymptotic models of the diffusion MRI signal and the ADC where the asymptotic parameter indicates the extent of the geometrical deformation. We compute numerically the first three terms of the asymptotic models and illustrate the effects of the deformations by comparing the diffusion MRI signal and the ADC from the canonical configuration with those of the deformed configuration.
The purpose of this work is to relate the diffusion MRI signal more directly with tissue geometrical parameters.
@article{MSIA_2023__12_1_65_0, author = {Zheyi Yang and Imen Mekkaoui and Jan Hesthaven and Jing-Rebecca Li}, title = {Asymptotic models of the diffusion {MRI} signal accounting for geometrical deformations}, journal = {MathematicS In Action}, pages = {65--85}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {12}, number = {1}, year = {2023}, doi = {10.5802/msia.32}, language = {en}, url = {https://msia.centre-mersenne.org/articles/10.5802/msia.32/} }
TY - JOUR AU - Zheyi Yang AU - Imen Mekkaoui AU - Jan Hesthaven AU - Jing-Rebecca Li TI - Asymptotic models of the diffusion MRI signal accounting for geometrical deformations JO - MathematicS In Action PY - 2023 SP - 65 EP - 85 VL - 12 IS - 1 PB - Société de Mathématiques Appliquées et Industrielles UR - https://msia.centre-mersenne.org/articles/10.5802/msia.32/ DO - 10.5802/msia.32 LA - en ID - MSIA_2023__12_1_65_0 ER -
%0 Journal Article %A Zheyi Yang %A Imen Mekkaoui %A Jan Hesthaven %A Jing-Rebecca Li %T Asymptotic models of the diffusion MRI signal accounting for geometrical deformations %J MathematicS In Action %D 2023 %P 65-85 %V 12 %N 1 %I Société de Mathématiques Appliquées et Industrielles %U https://msia.centre-mersenne.org/articles/10.5802/msia.32/ %R 10.5802/msia.32 %G en %F MSIA_2023__12_1_65_0
Zheyi Yang; Imen Mekkaoui; Jan Hesthaven; Jing-Rebecca Li. Asymptotic models of the diffusion MRI signal accounting for geometrical deformations. MathematicS In Action, Maths Bio, Volume 12 (2023) no. 1, pp. 65-85. doi : 10.5802/msia.32. https://msia.centre-mersenne.org/articles/10.5802/msia.32/
[1] Orientationally invariant indices of axon diameter and density from diffusion MRI, NeuroImage, Volume 52 (2010) no. 4, pp. 1374-1389 http://www.sciencedirect.com/science/article/pii/s1053811910007755 | DOI
[2] NeuroMorpho.Org: A Central Resource for Neuronal Morphologies, J. Neurosci., Volume 27 (2007) no. 35, pp. 9247-9251 | DOI
[3] Axcaliber: A method for measuring axon diameter distribution from diffusion MRI, Magn. Reson. Med., Volume 59 (2008) no. 6, pp. 1347-1354 | DOI
[4] MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders, Radiology, Volume 161 (1986) no. 2, pp. 401-407 | DOI
[5] Assessment of the effect of tissue motion in diffusion MRI: Derivation of new apparent diffusion coefficient formula, Inverse Probl. Imaging, Volume 12 (2018) no. 1, pp. 125-152 | DOI | MR | Zbl
[6] Mesoscopic structure of neuronal tracts from time-dependent diffusion, NeuroImage, Volume 114 (2015), pp. 18-37 | DOI
[7] Frequency-Domain Analysis of Spin Motion Using Modulated-Gradient NMR, J Magn. Reson., A, Volume 117 (1995) no. 1, pp. 118-122 http://www.sciencedirect.com/science/article/pii/s1064185885799597 | DOI
[8] Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain, Magn. Reson. Med., Volume 49 (2003) no. 2, pp. 206-215 | DOI
[9] Diffusion MRI simulation of realistic neurons with SpinDoctor and the Neuron Module, NeuroImage, Volume 222 (2020), p. 117198 | DOI
[10] White matter characterization with diffusional kurtosis imaging, NeuroImage, Volume 58 (2011) no. 1, pp. 177-188 | DOI
[11] Spin Echoes, Phys. Rev., Volume 80 (1950), pp. 580-594 | DOI | Zbl
[12] Modeling dendrite density from magnetic resonance diffusion measurements, NeuroImage, Volume 34 (2007) no. 4, pp. 1473-1486 http://www.sciencedirect.com/science/article/pii/s1053811906010950 | DOI
[13] SpinDoctor: A MATLAB toolbox for diffusion MRI simulation, NeuroImage, Volume 202 (2019), p. 116120 | DOI
[14] Quantifying the effect of tissue deformation on diffusion-weighted MRI: a mathematical model and an efficient simulation framework applied to cardiac diffusion imaging, Phys. Med. Biol., Volume 61 (2016) no. 15, pp. 5662-5686 | DOI
[15] Apparent diffusion coefficient measured by diffusion MRI of moving and deforming domains, J. Magn. Reson., Volume 318 (2020), p. 106809 | DOI
[16] Precise Inference and Characterization of Structural Organization (PICASO) of tissue from molecular diffusion, NeuroImage, Volume 146 (2017), pp. 452-473 | DOI
[17] New paradigm to assess brain cell morphology by diffusion-weighted MR spectroscopy in vivo, Proc. Natl. Acad. Sci. USA, Volume 113 (2016) no. 24, pp. 6671-6676 | arXiv | DOI
[18] Modeling diffusion of intracellular metabolites in the mouse brain up to very high diffusion-weighting: Diffusion in long fibers (almost) accounts for non-monoexponential attenuation, Magn. Reson. Med., Volume 77 (2017) no. 1, pp. 343-350 | DOI
[19] Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison, NeuroImage, Volume 59 (2012) no. 3, pp. 2241-2254 http://www.sciencedirect.com/science/article/pii/s1053811911011566 | DOI
[20] Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements, Appl. Math. Comput., Volume 219 (2013) no. 13, pp. 7151-7158 (ESCO 2010 Conference in Pilsen, June 21- 25, 2010) | DOI | MR | Zbl
[21] A macroscopic model for the diffusion MRI signal accounting for time-dependent diffusivity, SIAM J. Appl. Math., Volume 76 (2016) no. 3, pp. 930-949 | MR | Zbl
[22] Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient, J. Chem. Phys., Volume 42 (1965) no. 1, pp. 288-292 | DOI
[23] Axon diameter mapping in the presence of orientation dispersion with diffusion MRI, NeuroImage, Volume 56 (2011) no. 3, pp. 1301-1315 http://www.sciencedirect.com/science/article/pii/s1053811911001376 | DOI
[24] NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain, NeuroImage, Volume 61 (2012) no. 4, pp. 1000-1016 http://www.sciencedirect.com/science/article/pii/s1053811912003539 | DOI
Cited by Sources: