This paper aims to prove existence and uniqueness of a solution to the coupling of a nonlinear heat equation with nonlinear boundary conditions with the exact radiative transfer equation, assuming the absorption coefficient to be piecewise constant and null for small values of the wavelength as in the paper of N. Siedow, T. Grosan, D. Lochegnies, E. Romero, “Application of a New Method for Radiative Heat Tranfer to Flat Glass Tempering”, J. Am. Ceram. Soc., 88(8):2181-2187 (2005). An important observation is that for a fixed value of the wavelength , Planck function is a Lipschitz function with respect to the temperature. Using this fact, we deduce that the solution is at most unique. To prove existence of a solution, we define a fixed point problem related to our initial boundary value problem to which we apply Schauder theorem in a closed convex subset of the Banach separable space . We use also Stampacchia truncation method to derive lower and upper bounds on the solution.
DOI: 10.5802/msia.6
Keywords: elementary pencil of rays, Planck function, radiative transfer equation, glass plate, nonlinear heat-conduction equation, Stampacchia truncation method, Schauder theorem, Vitali theorem.
@article{MSIA_2012__5_1_1_0, author = {Luc Paquet and Raouf El Cheikh and Dominique Lochegnies and Norbert Siedow}, title = {Radiative {Heating} of a {Glass} {Plate}}, journal = {MathematicS In Action}, pages = {1--30}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {5}, number = {1}, year = {2012}, doi = {10.5802/msia.6}, zbl = {1328.35240}, mrnumber = {3015737}, language = {en}, url = {https://msia.centre-mersenne.org/articles/10.5802/msia.6/} }
TY - JOUR AU - Luc Paquet AU - Raouf El Cheikh AU - Dominique Lochegnies AU - Norbert Siedow TI - Radiative Heating of a Glass Plate JO - MathematicS In Action PY - 2012 SP - 1 EP - 30 VL - 5 IS - 1 PB - Société de Mathématiques Appliquées et Industrielles UR - https://msia.centre-mersenne.org/articles/10.5802/msia.6/ DO - 10.5802/msia.6 LA - en ID - MSIA_2012__5_1_1_0 ER -
%0 Journal Article %A Luc Paquet %A Raouf El Cheikh %A Dominique Lochegnies %A Norbert Siedow %T Radiative Heating of a Glass Plate %J MathematicS In Action %D 2012 %P 1-30 %V 5 %N 1 %I Société de Mathématiques Appliquées et Industrielles %U https://msia.centre-mersenne.org/articles/10.5802/msia.6/ %R 10.5802/msia.6 %G en %F MSIA_2012__5_1_1_0
Luc Paquet; Raouf El Cheikh; Dominique Lochegnies; Norbert Siedow. Radiative Heating of a Glass Plate. MathematicS In Action, Volume 5 (2012) no. 1, pp. 1-30. doi : 10.5802/msia.6. https://msia.centre-mersenne.org/articles/10.5802/msia.6/
[1] “Continuité des contractions dans les espaces de Dirichlet”, 563, Springer-Verlag, 1976 | MR | Zbl
[2] “Analyse fonctionnelle Théorie et applications”, Masson, Paris, 1993
[3] Optimal Control of Radiative Heat Transfer in Glass Cooling with Restrictions on the Temperature Gradient, Optim. Control Appl. Meth. (2011) | Zbl
[4] “Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques Volume 8 Evolution: semi-groupe, variationnel”, Masson, Paris, 1988 | Zbl
[5] “Rayonnements optiques Radiométrie-Photométrie”, Masson, Paris, 1991
[6] Weak solutions to a time-dependent heat equation with nonlocal radiation boundary condition and arbitrary p-summable right-hand side, Applications of Mathematics, Volume 55 (2010) no. 2, pp. 111-149 | DOI | MR | Zbl
[7] “Partial Differential Equations”, GSM 19, AMS Providence, Rhode Island, 1999
[8] “Partial Differential Equations”, Robert E. Krieger Publishing Company, 1976
[9] “Optimization with PDE constraints”, Springer, 2009 | Zbl
[10] “Radiative Transfer”, McGraw-Hill Book Company, 1967
[11] “An Introduction to Variational Inequalities and their Applications”, Academic Press, 1980 | Zbl
[12] “Linear and Quasilinear Equations of Parabolic Type”, 23, Translations of Mathematical Monographs, AMS Providence, 1968 | MR
[13] “Mathematical modelling of conductive-radiative heat transfer”, University of Jyväskylä (2000) (Ph. D. Thesis)
[14] Integro-differential equation modelling heat transfer in conducting, radiating and semitransparent materials, Math. Methods Appl. Sci., Volume 21 (1998) no. 5, pp. 375-392 | DOI | MR | Zbl
[15] Adaptive computation for boundary control of radiative heat transfer in glass, Journal of Computational and Applied Mathematics, Volume 183 (2005), pp. 312-326 | DOI | MR | Zbl
[16] “Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires”, Dunod, Paris, 1967 | Zbl
[17] Optique Géométrique Générale, in Encyclopedia of Physics, volume XXIV: Fundamentals of Optics with 761 figures, edited by S. Flügge, Volume 24 (1956), pp. 44-170
[18] “Mesures et probabilités”, Hermann, 1974 | Zbl
[19] Optimal control of a semilinear PDE with nonlocal radiation interface conditions, SIAM J. Control Optim., Volume 45 (2006), pp. 699-721 | DOI | MR | Zbl
[20] “Radiative Heat Transfer”, Academic Press, 2003
[21] “Non linear mappings of monotone type”, Editura Academiei, Bucuresti, Romania, Sijthoff & Noordhoff International Publishers, 1978 | Zbl
[22] Analysis of optimal boundary control for radiative heat ransfer modeled by the SP-system, Communications in Mathematical Sciences, Volume 5,4 (2007), pp. 951-969 | DOI
[23] “The theory of Heat Radiation”, Dover Publications Inc., 1991 | Zbl
[24] “Methods of Modern Mathematical Physics I: Functional analysis”, Academic Press, 1972
[25] Application of a New Method for Radiative Heat Tranfer to Flat Glass Tempering, J. Am. Ceram. Soc., Volume 88 (2005) no. 8, pp. 2181-2187 | DOI
[26] “Etude numérique et expérimentale du thermoformage d’une plaque de verre”, Nancy-Université Henri Poincaré, laboratoire LEMTA, (2009) (Ph. D. Thesis)
[27] “Transferts Thermiques Introduction aux transferts d’énergie”, Dunod, 2008
[28] “Heat Transfer”, Prentice Hall, 1993 | Zbl
[29] “Functional Analysis”, Springer-Verlag, 1971 | DOI | Zbl
Cited by Sources: