Radiative Heating of a Glass Plate
MathematicS In Action, Volume 5 (2012) no. 1, pp. 1-30.

This paper aims to prove existence and uniqueness of a solution to the coupling of a nonlinear heat equation with nonlinear boundary conditions with the exact radiative transfer equation, assuming the absorption coefficient κ(λ) to be piecewise constant and null for small values of the wavelength λ as in the paper of N. Siedow, T. Grosan, D. Lochegnies, E. Romero, “Application of a New Method for Radiative Heat Tranfer to Flat Glass Tempering”, J. Am. Ceram. Soc., 88(8):2181-2187 (2005). An important observation is that for a fixed value of the wavelength λ, Planck function is a Lipschitz function with respect to the temperature. Using this fact, we deduce that the solution is at most unique. To prove existence of a solution, we define a fixed point problem related to our initial boundary value problem to which we apply Schauder theorem in a closed convex subset of the Banach separable space L 2 (0,t f ;C([0,l])). We use also Stampacchia truncation method to derive lower and upper bounds on the solution.

Published online:
DOI: 10.5802/msia.6
Classification: 35K20, 35K55, 35K58, 35K90, 35Q20, 35Q60, 35Q80
Keywords: elementary pencil of rays, Planck function, radiative transfer equation, glass plate, nonlinear heat-conduction equation, Stampacchia truncation method, Schauder theorem, Vitali theorem.
Luc Paquet 1; Raouf El Cheikh 2; Dominique Lochegnies 2; Norbert Siedow 3

1 Univ. Lille Nord de France UVHC-ISTV, LAMAV-EDP FR no 2956, 59313 Valenciennes, France (Author to whom all correspondence should be addressed)
2 Univ. Lille Nord de France UVHC-ISTV, TEMPO, 59313 Valenciennes, France
3 Fraunhofer Institute for Industrial Mathematics, ITWM, 67663 Kaiserlautern, Germany
     author = {Luc Paquet and Raouf El Cheikh and Dominique Lochegnies and Norbert Siedow},
     title = {Radiative {Heating} of a {Glass} {Plate}},
     journal = {MathematicS In Action},
     pages = {1--30},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {5},
     number = {1},
     year = {2012},
     doi = {10.5802/msia.6},
     zbl = {1328.35240},
     mrnumber = {3015737},
     language = {en},
     url = {https://msia.centre-mersenne.org/articles/10.5802/msia.6/}
AU  - Luc Paquet
AU  - Raouf El Cheikh
AU  - Dominique Lochegnies
AU  - Norbert Siedow
TI  - Radiative Heating of a Glass Plate
JO  - MathematicS In Action
PY  - 2012
SP  - 1
EP  - 30
VL  - 5
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://msia.centre-mersenne.org/articles/10.5802/msia.6/
DO  - 10.5802/msia.6
LA  - en
ID  - MSIA_2012__5_1_1_0
ER  - 
%0 Journal Article
%A Luc Paquet
%A Raouf El Cheikh
%A Dominique Lochegnies
%A Norbert Siedow
%T Radiative Heating of a Glass Plate
%J MathematicS In Action
%D 2012
%P 1-30
%V 5
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U https://msia.centre-mersenne.org/articles/10.5802/msia.6/
%R 10.5802/msia.6
%G en
%F MSIA_2012__5_1_1_0
Luc Paquet; Raouf El Cheikh; Dominique Lochegnies; Norbert Siedow. Radiative Heating of a Glass Plate. MathematicS In Action, Volume 5 (2012) no. 1, pp. 1-30. doi : 10.5802/msia.6. https://msia.centre-mersenne.org/articles/10.5802/msia.6/

[1] A. Ancona “Continuité des contractions dans les espaces de Dirichlet”, 563, Springer-Verlag, 1976 | MR | Zbl

[2] H. Brézis “Analyse fonctionnelle Théorie et applications”, Masson, Paris, 1993

[3] D. Clever; J. Lang Optimal Control of Radiative Heat Transfer in Glass Cooling with Restrictions on the Temperature Gradient, Optim. Control Appl. Meth. (2011) | Zbl

[4] L. Dautray; J.-L. Lions “Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques Volume 8 Evolution: semi-groupe, variationnel”, Masson, Paris, 1988 | Zbl

[5] F. Desvignes “Rayonnements optiques Radiométrie-Photométrie”, Masson, Paris, 1991

[6] P.-E. Druet Weak solutions to a time-dependent heat equation with nonlocal radiation boundary condition and arbitrary p-summable right-hand side, Applications of Mathematics, Volume 55 (2010) no. 2, pp. 111-149 | DOI | MR | Zbl

[7] L.C. Evans “Partial Differential Equations”, GSM 19, AMS Providence, Rhode Island, 1999

[8] A. Friedman “Partial Differential Equations”, Robert E. Krieger Publishing Company, 1976

[9] M. Hinze; R. Pinnau; M. Ulbrich; S. Ulbrich “Optimization with PDE constraints”, Springer, 2009 | Zbl

[10] H.C. Hottel; A.F. Sarofim “Radiative Transfer”, McGraw-Hill Book Company, 1967

[11] D. Kinderlehrer; G. Stampacchia “An Introduction to Variational Inequalities and their Applications”, Academic Press, 1980 | Zbl

[12] O.A. Ladyzenskaja; V.A. Solonnikov; N.N. Uralceva “Linear and Quasilinear Equations of Parabolic Type”, 23, Translations of Mathematical Monographs, AMS Providence, 1968 | MR

[13] L.T. Laitinen “Mathematical modelling of conductive-radiative heat transfer”, University of Jyväskylä (2000) (Ph. D. Thesis)

[14] M.T. Laitinen; T. Tiihonen Integro-differential equation modelling heat transfer in conducting, radiating and semitransparent materials, Math. Methods Appl. Sci., Volume 21 (1998) no. 5, pp. 375-392 | DOI | MR | Zbl

[15] J. Lang Adaptive computation for boundary control of radiative heat transfer in glass, Journal of Computational and Applied Mathematics, Volume 183 (2005), pp. 312-326 | DOI | MR | Zbl

[16] J.-L. Lions “Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires”, Dunod, Paris, 1967 | Zbl

[17] A. Maréchal Optique Géométrique Générale, in Encyclopedia of Physics, volume XXIV: Fundamentals of Optics with 761 figures, edited by S. Flügge, Volume 24 (1956), pp. 44-170

[18] C.-M. Marle “Mesures et probabilités”, Hermann, 1974 | Zbl

[19] C. Meyer; P. Philip; F. Tröltzsch Optimal control of a semilinear PDE with nonlocal radiation interface conditions, SIAM J. Control Optim., Volume 45 (2006), pp. 699-721 | DOI | MR | Zbl

[20] M.F. Modest “Radiative Heat Transfer”, Academic Press, 2003

[21] D. Pascali; S. Sburlan “Non linear mappings of monotone type”, Editura Academiei, Bucuresti, Romania, Sijthoff & Noordhoff International Publishers, 1978 | Zbl

[22] R. Pinnau Analysis of optimal boundary control for radiative heat ransfer modeled by the SP 1 -system, Communications in Mathematical Sciences, Volume 5,4 (2007), pp. 951-969 | DOI

[23] M. Planck “The theory of Heat Radiation”, Dover Publications Inc., 1991 | Zbl

[24] M. Reed; B. Simon “Methods of Modern Mathematical Physics I: Functional analysis”, Academic Press, 1972

[25] N. Siedow; T. Grosan; D. Lochegnies; E. Romero Application of a New Method for Radiative Heat Tranfer to Flat Glass Tempering, J. Am. Ceram. Soc., Volume 88 (2005) no. 8, pp. 2181-2187 | DOI

[26] L. Soudre “Etude numérique et expérimentale du thermoformage d’une plaque de verre”, Nancy-Université Henri Poincaré, laboratoire LEMTA, (2009) (Ph. D. Thesis)

[27] J. Taine; E. Iacona; J.-P. Petit “Transferts Thermiques Introduction aux transferts d’énergie”, Dunod, 2008

[28] J. Taine; J.-P. Petit “Heat Transfer”, Prentice Hall, 1993 | Zbl

[29] K. Yosida “Functional Analysis”, Springer-Verlag, 1971 | DOI | Zbl

Cited by Sources: