Digestion in the small intestine is the result of complex mechanical and biological phenomena which can be modelled at different scales. In a previous article, we introduced a system of ordinary differential equations for describing the transport and degradation-absorption processes during the digestion. The present article sustains this simplified model by showing that it can be seen as a macroscopic version of more realistic models including biological phenomena at lower scales. In other words, our simplified model can be considered as a limit of more realistic ones by averaging-homogenization methods on biological processes representation.
DOI: 10.5802/msia.7
Keywords: Digestion in the small intestine, peristalsis, intestinal villi, homogenization, viscosity solutions
@article{MSIA_2013__6_1_1_0, author = {Masoomeh Taghipoor and Guy Barles and Christine Georgelin and Jean-Ren\'e Licois and Philippe Lescoat}, title = {Mathematical {Homogenization} in the {Modelling} of {Digestion} in the {Small} {Intestine}}, journal = {MathematicS In Action}, pages = {1--19}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {6}, number = {1}, year = {2013}, doi = {10.5802/msia.7}, zbl = {1350.92011}, mrnumber = {3084696}, language = {en}, url = {https://msia.centre-mersenne.org/articles/10.5802/msia.7/} }
TY - JOUR AU - Masoomeh Taghipoor AU - Guy Barles AU - Christine Georgelin AU - Jean-René Licois AU - Philippe Lescoat TI - Mathematical Homogenization in the Modelling of Digestion in the Small Intestine JO - MathematicS In Action PY - 2013 SP - 1 EP - 19 VL - 6 IS - 1 PB - Société de Mathématiques Appliquées et Industrielles UR - https://msia.centre-mersenne.org/articles/10.5802/msia.7/ DO - 10.5802/msia.7 LA - en ID - MSIA_2013__6_1_1_0 ER -
%0 Journal Article %A Masoomeh Taghipoor %A Guy Barles %A Christine Georgelin %A Jean-René Licois %A Philippe Lescoat %T Mathematical Homogenization in the Modelling of Digestion in the Small Intestine %J MathematicS In Action %D 2013 %P 1-19 %V 6 %N 1 %I Société de Mathématiques Appliquées et Industrielles %U https://msia.centre-mersenne.org/articles/10.5802/msia.7/ %R 10.5802/msia.7 %G en %F MSIA_2013__6_1_1_0
Masoomeh Taghipoor; Guy Barles; Christine Georgelin; Jean-René Licois; Philippe Lescoat. Mathematical Homogenization in the Modelling of Digestion in the Small Intestine. MathematicS In Action, Volume 6 (2013) no. 1, pp. 1-19. doi : 10.5802/msia.7. https://msia.centre-mersenne.org/articles/10.5802/msia.7/
[1] Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques & Applications (Berlin) [Mathematics & Applications], 17, Springer-Verlag, Paris, 1994 | Zbl
[2] Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications, J. Differential Equations, Volume 154 (1999) no. 1, pp. 191-224 | DOI | MR | Zbl
[3] Ergodic problems and periodic homogenization for fully nonlinear equations in half-space type domains with Neumann boundary conditions, Indiana Univ. Math. J., Volume 57 (2008) no. 5, pp. 2355-2375 | DOI | MR | Zbl
[4] User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), Volume 27 (1992) no. 1, pp. 1-67 | DOI | MR | Zbl
[5] The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, Volume 111 (1989) no. 3-4, pp. 359-375 | DOI | MR | Zbl
[6] Periodic homogenisation of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, Volume 120 (1992) no. 3-4, pp. 245-265 | DOI | MR | Zbl
[7] Perron’s method for Hamilton-Jacobi equations, Duke Math. J., Volume 55 (1987) no. 2, pp. 369-384 | DOI | MR | Zbl
[8] Mathematical physiology. Vol. II: Systems physiology, Interdisciplinary Applied Mathematics, 8/, Springer, New York, 2009 | DOI | MR | Zbl
[9] Location, time, and temperature dependence of digestion in simple animal tracts, J. Theoret. Biol., Volume 216 (2002) no. 1, pp. 5-18 | DOI | MR
[10] A mathematical study of peristaltic transport of a Casson fluid, Math. Comput. Modelling, Volume 35 (2002) no. 7-8, pp. 895-912 | DOI | MR | Zbl
[11] Dynamics of intestinal propulsion, J. Theoret. Biol., Volume 246 (2007) no. 2, pp. 377-393 | DOI | MR | Zbl
[12] Homogeneization problems for ordinary differential equations, Rend. Circ. Mat. Palermo (2), Volume 27 (1978) no. 1, pp. 95-112 | DOI | MR | Zbl
[13] Eckert Animal Physiology: Mechanisms and Adaptations, W.H. Freeman & Company, 1997 http://amazon.com/o/ASIN/0716724146/
[14] A dynamic model of protein digestion in the small intestine of pigs, J Anim Sci, Volume 78 (2000) no. 2, pp. 328-340 | DOI
[15] Mathematical modeling of transport and degradation of feedstuffs in the small intestine, Journal of Theoretical Biology, Volume 294 (2012), pp. 114 -121 http://www.sciencedirect.com/science/article/pii/S002251931100539X | DOI | Zbl
[16] Review of a histological intestinal approach to assessing the intestinal function in chickens and pigs, Animal Science Journal, Volume 78 (2007), pp. 356-370 | DOI
[17] Intestinal transit and absorption of soy protein in dogs depend on load and degree of protein hydrolysis., J Nutr, Volume 127 (1997) no. 12, pp. 2350-2356 | DOI
Cited by Sources: