Numerical Modeling of the Intracranial Pressure using Windkessel Models
MathematicS In Action, Volume 8 (2017) no. 1, p. 9-25

The intracranial pressure (ICP) is an important factor in the proper functioning of the brain. This pressure is needed to be constantly regulated, since an abnormal elevation can be quite dangerous. In this article, we develop some numerical tools to better understand the regulation of this pressure. In particular, as it is impossible to measure the ICP in a non-invasive way, these numerical tools can allow to estimate values of the ICP. In addition, we propose to compute the dynamics of the cerebrospinal fluid (CSF), taking into account the connected environment of the skull and the arterio-venous flows. A computational fluid dynamics model in two dimensions is developed for the cerebrospinal fluid system, with Windkessel type boundary conditions. This model shows that the dynamics can impact the distribution of the CSF in the different compartments of the cerebrospinal system.

Published online : 2018-01-08
DOI : https://doi.org/10.5802/msia.11
Classification:  76Z05
Keywords: Intracranial pressure, Stokes equations, Finite element method, Windkessel models.
@article{MSIA_2017__8_1_9_0,
     author = {Simon Garnotel and St\'ephanie Salmon and Olivier Bal\'edent},
     title = {Numerical Modeling of the Intracranial Pressure using Windkessel Models},
     journal = {MathematicS In Action},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {8},
     number = {1},
     year = {2017},
     pages = {9-25},
     doi = {10.5802/msia.11},
     language = {en},
     url = {https://msia.centre-mersenne.org/item/MSIA_2017__8_1_9_0}
}
Garnotel, Simon; Salmon, Stéphanie; Balédent, Olivier. Numerical Modeling of the Intracranial Pressure using Windkessel Models. MathematicS In Action, Volume 8 (2017) no. 1, pp. 9-25. doi : 10.5802/msia.11. https://msia.centre-mersenne.org/item/MSIA_2017__8_1_9_0/

[1] M.J. Albeck; S.E. Børgesen; F. Gjerris; J.F. Schmidt; P.S. Sørensen Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects, J. Neurosurg., Tome 74 (1991) no. 4, pp. 597-600 | Article

[2] N. Alperin; M. Mazda; T. Lichtor; S.H. Lee From cerebrospinal fluid pulsation to noninvasive intracranial compliance and pressure measured by MRI flow studies, Curr. Med. Imaging Rev., Tome 2 (2006) no. 1, pp. 117-129 | Article

[3] O. Balédent; C. Gondry-Jouet; M.E. Meyer; G. De Marco; D. Le Gars; M.C. Henry-Feugeas; I. Idy-Peretti Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus, Invest. Radiol., Tome 39 (2004) no. 1, pp. 45-55 | Article

[4] O. Balédent; I. Idy-Peretti; MC Henry-Feugeas Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation, Invest. Radiol., Tome 36 (2001) no. 7, pp. 368-377 | Article

[5] R. Bouzerar; M. Czosnyka; Z. Czosnyka; O. Balédent Physical Phantom of Craniospinal Hydrodynamics, Springer (2012)

[6] J. Cahouet; J.-P. Chabard Some fast 3D finite element solvers for the generalized Stokes problem, International Journal for Numerical Methods in Fluids, Tome 8 (1988) no. 8, pp. 869-895 | Article

[7] E.R. Cardoso; J.O. Rowan; S. Galbraith Analysis of the cerebrospinal fluid pulse wave in intracranial pressure, J. Neurosurg., Tome 59 (1983) no. 5, pp. 817-821 | Article

[8] M. Czosnyka; J.D. Pickard Monitoring and interpretation of intracranial pressure, J. Neurol. Neurosurg. Psychiatry, Tome 75 (2004) no. 6, pp. 813-821 | Article

[9] J. Fouchet-Incaux; C. Grandmont; S. Martin Numerical Stability of Coupling Schemes in the 3D/0D Modelling of Air Flows and Blood Flows, HAL-01095960v1 (2015)

[10] S. Garnotel Modélisation numérique de la pression intracrâcranienne via les écoulements du liquide cérébrospinal et du sang mesurés par IRM de flux, UPJV (2016) (Ph. D. Thesis)

[11] S. Garnotel; S. Salmon; O. Balédent Numerical Cerebrospinal System Modeling in Fluid- Structure Interaction, HAL-01427455 (2017)

[12] D. Greitz Radiological assessment of hydrocephalus: New theories and implications for therapy, Neurosurg. Rev., Tome 27 (2004) no. 3, pp. 145-165 | Article

[13] F. Hecht New development in Freefem++, J. Numer. Math., Tome 20 (2012) no. 3-4, pp. 251-265 | Article

[14] A.A. Linninger; M. Xenos; D.C. Zhu; M.R. Somayaji; S. Kondapalli; R.D. Penn Cerebrospinal fluid flow in the normal and hydrocephalic human brain, IEEE Trans. Biomed. Eng., Tome 54 (2007) no. 2, pp. 291-302 | Article

[15] A. Marmarou; M. Bergsneider; N. Relkin; P. Klinge; P. Black Development of guidelines for idiopathic normal-pressure hydrocephalus: introduction, Neurosurgery, Tome 57 (2005) no. 3, p. S2-1 | Article

[16] A. Marmarou; K. Shulman; J. LaMorgese Compartmental Analysis of Compliance and Outflow Resistance of the Cerebrospinal Fluid System, J. Neurosurg., Tome 43 (1975), pp. 523-534 | Article

[17] A. Marmarou; K. Shulman; R.M. Rosende A Nonlinear Analysis of the Cerebrospinal Fluid System and Intracranial Pressure Dynamics, J. Neurosurg., Tome 48 (1978) no. 3, pp. 332-344 | Article

[18] M. McAuliffe Medical image processing, analysis, and visualization (MIPAV), National Institutes of Health (2009)

[19] G. Pagé; S. Fall; R. Bouzerar; A. Heintz; S. Delepierre; O. Balédent In-vitro assessment of high resolution PC-MRI, ECR 2015 (2015)

[20] A. Quarteroni Numerical Models for Differential Problems, Springer Tome 2 (2009)

[21] S. Qvarlander; B. Lundkvist; L.-O D. Koskinen; J. Malm; A. Eklund Pulsatility in CSF dynamics: pathophysiology of idiopathic normal pressure hydrocephalus, J. Neurol. Neurosurg. Psychiatry, Tome 84 (2013) no. 7, pp. 735-741 | Article

[22] J.E. Roberts; J.M. Thomas Mixed and hybrid methods, Handb. Numer. Anal., Tome 2 (1991), pp. 523-639

[23] K. Sagawa; R.K. Lie; J. Schaefer Translation of Otto frank’s paper “Die Grundform des arteriellen Pulses” Zeitschrift für biologie 37: 483–526 (1899), J. Mol. Cell. Cardiol, Tome 22 (1990) no. 3, p. 253-254 | Article

[24] S. El Sankari; C. Gondry-Jouet; A. Fichten; O. Godefroy; J-M. Serot; H. Deramond; M.E. Meyer; O. Balédent Cerebrospinal fluid and blood flow in mild cognitive impairment and Alzheimer’s disease: a differential diagnosis from idiopathic normal pressure hydrocephalus, Fluids Barriers CNS, Tome 8 (2011) no. 1, 12 pages | Article

[25] M. Ursino; C.A. Lodi A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics, J. Appl. Physiol., Tome 82 (1997) no. 4, pp. 1256-1269 | Article

[26] I.E. Vignon-Clementel; C. A. Figueroa; K. E. Jansen; C. A. Taylor Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries, Computer Methods in Applied Mechanics and Engineering, Tome 195 (2006) no. 29–32, pp. 3776 -3796 http://www.sciencedirect.com/science/article/pii/S0045782505002586 | Article