Sharp prediction of extinction times is needed in biodiversity monitoring and conservation management. The Galton–Watson process is a classical stochastic model for describing population dynamics. Its evolution is like the matrix population model where offspring numbers are random. Extinction probability, extinction time, abundance are well known and given by explicit formulas. In contrast with the deterministic model, it can be applied to small populations. Parameters of this model can be estimated through the Bayesian inference framework. This enables to consider various scenarios. We show how coupling Bayesian inference with the Galton–Watson model provides several features: (i) a flexible modelling approach with easily understandable parameters (ii) compatibility with the classical matrix population model (Leslie type model) (iii) An approach which leads to more information with less computing iv) inclusion of expert or previous knowledge...It can be seen to go one step further than the classical matrix population model for the viability problem. To illustrate these features, we provide analysis details for a real life example with French Pyrenean brown bears.
@article{MSIA_2023__12_1_49_0, author = {Bertrand Cloez and Tanguy Daufresne and Marion Kerioui and B\'en\'edicte Fontez}, title = {A bayesian version of {Galton{\textendash}Watson} for population growth and its use in the management of small population}, journal = {MathematicS In Action}, pages = {49--64}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {12}, number = {1}, year = {2023}, doi = {10.5802/msia.31}, language = {en}, url = {https://msia.centre-mersenne.org/articles/10.5802/msia.31/} }
TY - JOUR AU - Bertrand Cloez AU - Tanguy Daufresne AU - Marion Kerioui AU - Bénédicte Fontez TI - A bayesian version of Galton–Watson for population growth and its use in the management of small population JO - MathematicS In Action PY - 2023 SP - 49 EP - 64 VL - 12 IS - 1 PB - Société de Mathématiques Appliquées et Industrielles UR - https://msia.centre-mersenne.org/articles/10.5802/msia.31/ DO - 10.5802/msia.31 LA - en ID - MSIA_2023__12_1_49_0 ER -
%0 Journal Article %A Bertrand Cloez %A Tanguy Daufresne %A Marion Kerioui %A Bénédicte Fontez %T A bayesian version of Galton–Watson for population growth and its use in the management of small population %J MathematicS In Action %D 2023 %P 49-64 %V 12 %N 1 %I Société de Mathématiques Appliquées et Industrielles %U https://msia.centre-mersenne.org/articles/10.5802/msia.31/ %R 10.5802/msia.31 %G en %F MSIA_2023__12_1_49_0
Bertrand Cloez; Tanguy Daufresne; Marion Kerioui; Bénédicte Fontez. A bayesian version of Galton–Watson for population growth and its use in the management of small population. MathematicS In Action, Maths Bio, Volume 12 (2023) no. 1, pp. 49-64. doi : 10.5802/msia.31. https://msia.centre-mersenne.org/articles/10.5802/msia.31/
[1] Branching processes, Courier Corporation, 2004
[2] Poisson Approximation, Oxford Science Publications, Clarendon Press, 1992
[3] Population waves, J. Burma Res. Soc., Volume 31 (1941), pp. 3-18
[4] De la loi de multiplication et de la durée des familles, Soc. Philomat. Paris Extraits, Sér, Volume 5 (1845), pp. 37-39
[5] Global stabilizing feedback law for a problem of biological control of mosquito-borne diseases, 2015 54th IEEE Conference on Decision and Control (CDC) (2015), pp. 3206-3211 | DOI
[6] Restitution of gamma-and K-Selection as a Model of Density-Dependent Natural Selection, Annu. Rev. Ecol. System., Volume 15 (1984) no. 1, pp. 427-447 | DOI
[7] Population Viability Analysis, Annu. Rev. Ecol. System., Volume 23 (1992) no. 1, pp. 481-497 | arXiv | DOI
[8] A comparison of models for predicting population persistence, Ecol. Model., Volume 201 (2007) no. 1, pp. 19-26 (Management, Control and Decision Making for Ecological Systems) | DOI
[9] SUIVI DE L’OURS BRUN DANS LES PYRENEES FRANCAISES (Sous-populations occidentale et centrale) Rapport annuel Année 2016 (2016) (Technical report)
[10] Effect of population size in a predator–prey model, Ecol. Model., Volume 246 (2012), pp. 1-10 | DOI
[11] Matrix population models: construction, analysis, and interpretation, Sinauer Associates, 1989
[12] Declining survival probability threatens the North Atlantic right whale, Proc. Natl. Acad. Sci. USA, Volume 96 (1999) no. 6, pp. 3308-3313 | DOI
[13] Which future for the French Pyrenean brown bear (Ursus arctos) population? An approach using stage-structured deterministic and stochastic models, C. R. Biol., Volume 326 (2003), pp. 174-182 | DOI
[14] Extinction conditions for certain bisexual Galton-Watson branching processes, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 9 (1968) no. 4, pp. 315-322 | DOI | MR | Zbl
[15] Extinction in relation to demographic and environmental stochasticity in age-structured models, Math. Biosci., Volume 195 (2005) no. 2, pp. 210-227 | DOI | MR | Zbl
[16] Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics, Mol. Ecol. Resour., Volume 12 (2012) no. 5, pp. 846-855 | DOI
[17] Exotic invasive knotweeds (Fallopia spp.) negatively affect native plant and invertebrate assemblages in European riparian habitats, Biol. Conserv., Volume 141 (2008) no. 3, pp. 646-654 | DOI
[18] Quasiextinction Probabilities as a Measure of Impact on Population Growth, Risk Analysis, Volume 2 (1982) no. 3, pp. 171-181 | DOI
[19] Non-parametric Bayesian estimation for multitype branching processes through simulation-based methods, Comput. Stat. Data Anal., Volume 52 (2008) no. 3, pp. 1281-1291 | DOI | MR
[20] Potential of branching processes as a modeling tool for conservation biology, Quantitative methods for conservation biology, Springer, 2000, pp. 199-225 | DOI
[21] Branching processes: variation, growth, and extinction of populations, Cambridge University Press, 2005 | DOI
[22] The theory of branching processes, Courier Corporation, 2002
[23] A statistical approach to quasi-extinction forecasting, Ecol. Lett., Volume 10 (2007) no. 12, pp. 1182-1198 | arXiv | DOI
[24] Branching Processes in Biology, Interdisciplinar Applied Mathematics, 19, Springer, 2002 | DOI
[25] Extinction and viability of populations: paradigms and concepts of extinction models, Ecoscience, Volume 14 (2007) no. 4, pp. 472-481 | DOI
[26] On the use of matrices in certain population mathematics, Biometrika (1945), pp. 183-212 | DOI | MR | Zbl
[27] On the Generation and Growth of a Population, Sankhyā, Ser. A, Volume 6 (1942) no. 1, pp. 93-96
[28] 100 of the world’s worst invasive alien species: a selection from the global invasive species database, 12, Invasive Species Specialist Group Auckland, 2000
[29] Modèles aléatoires en Ecologie et Evolution, Springer, 2016
[30] Bayesian conjugate analysis of the Galton–Watson process, Test, Volume 9 (2000) no. 1, pp. 149-171 | DOI | MR | Zbl
[31] et al. Quantitative conservation biology. Theory and Practice of Population Viability Analysis, Sinauer, 2002
[32] Stochastic models of population extinction, Trends Ecol. Evol., Volume 25 (2010) no. 11, pp. 643-652 | DOI
[33] A Tutorial for Understanding Ecological Modeling Papers for the Nonmodeler, Am. Entomol., Volume 46 (2000) no. 1, pp. 40-49 | DOI
[34] The Bayesian choice: from decision-theoretic foundations to computational implementation, Springer, 2007
[35] Statistique Bayésienne, Notes de cours (2009) (http://www.crest.fr/ckfinder/userfiles/files/pageperso/mandre/sb_cours.pdf)
[36] Influence of harvesting pressure on demographic tactics: implications for wildlife management, J. Appl. Ecol., Volume 48 (2011) no. 4, pp. 835-843 | DOI
[37] Modélisation de la dynamique de population d’une plante native (palmier babaçu) dans le cadre d’un projet de gestion durable au Brésil, Ph. D. Thesis, Université de Montpellier (2018) https://tel.archives-ouvertes.fr/tel-01807940/document
[38] Viable Populations for Conservation, Cambridge University Press, 1987 | DOI
[39] Structured-Population Models in Marine, Terrestrial, and Freshwater Systems, Population and Community Biology Series, Springer, 1997 | DOI
[40] On the probability of the extinction of families, Journal of the Anthropological Institute of Great Britain and Ireland, Volume 4 (1875), pp. 138-144 | DOI
[41] Assessing the risk of extinction for the brown bear (Ursus arctos) in the Cordillera Cantabrica, Spain, Ecol. Monogr., Volume 68 (1998) no. 4, pp. 539-570 | DOI
Cited by Sources: