Asymptotic models of the diffusion MRI signal accounting for geometrical deformations
MathematicS In Action, Tome 12 (2023) no. 1, pp. 65-85.

The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses can be modeled by the Bloch-Torrey partial differential equation (PDE). The associated diffusion MRI signal is the spatial integral of the solution of the Bloch-Torrey PDE. In addition to the signal, the time-dependent apparent diffusion coefficient (ADC) can be obtained from the solution of another partial differential equation, called the HADC model, which was obtained using homogenization techniques.

In this paper, we analyze the Bloch-Torrey PDE and the HADC model in the context of geometrical deformations starting from a canonical configuration. To be more concrete, we focused on two analytically defined deformations: bending and twisting. We derived asymptotic models of the diffusion MRI signal and the ADC where the asymptotic parameter indicates the extent of the geometrical deformation. We compute numerically the first three terms of the asymptotic models and illustrate the effects of the deformations by comparing the diffusion MRI signal and the ADC from the canonical configuration with those of the deformed configuration.

The purpose of this work is to relate the diffusion MRI signal more directly with tissue geometrical parameters.

Publié le :
DOI : 10.5802/msia.32
Mots clés : Bloch-Torrey PDE, diffusion magnetic resonance imaging, finite elements, simulation, apparent diffusion coefficient
Zheyi Yang 1 ; Imen Mekkaoui 2 ; Jan Hesthaven 3 ; Jing-Rebecca Li 4

1 INRIA Saclay, Equipe IDEFIX, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France
2 Laboratoire LMSSA, University Dr. Tahar Moulay, Saida, Algeria
3 Chair of CMSS, EPFL, Lausanne, Switzerland
4 INRIA Saclay, Equipe IDEFIX, 1 Rue Honoré d’Estienne d’Orves, 91120 Palaiseau, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{MSIA_2023__12_1_65_0,
     author = {Zheyi Yang and Imen Mekkaoui and Jan Hesthaven and Jing-Rebecca Li},
     title = {Asymptotic models of the diffusion {MRI} signal accounting for geometrical deformations},
     journal = {MathematicS In Action},
     pages = {65--85},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {12},
     number = {1},
     year = {2023},
     doi = {10.5802/msia.32},
     language = {en},
     url = {https://msia.centre-mersenne.org/articles/10.5802/msia.32/}
}
TY  - JOUR
AU  - Zheyi Yang
AU  - Imen Mekkaoui
AU  - Jan Hesthaven
AU  - Jing-Rebecca Li
TI  - Asymptotic models of the diffusion MRI signal accounting for geometrical deformations
JO  - MathematicS In Action
PY  - 2023
SP  - 65
EP  - 85
VL  - 12
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://msia.centre-mersenne.org/articles/10.5802/msia.32/
DO  - 10.5802/msia.32
LA  - en
ID  - MSIA_2023__12_1_65_0
ER  - 
%0 Journal Article
%A Zheyi Yang
%A Imen Mekkaoui
%A Jan Hesthaven
%A Jing-Rebecca Li
%T Asymptotic models of the diffusion MRI signal accounting for geometrical deformations
%J MathematicS In Action
%D 2023
%P 65-85
%V 12
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U https://msia.centre-mersenne.org/articles/10.5802/msia.32/
%R 10.5802/msia.32
%G en
%F MSIA_2023__12_1_65_0
Zheyi Yang; Imen Mekkaoui; Jan Hesthaven; Jing-Rebecca Li. Asymptotic models of the diffusion MRI signal accounting for geometrical deformations. MathematicS In Action, Tome 12 (2023) no. 1, pp. 65-85. doi : 10.5802/msia.32. https://msia.centre-mersenne.org/articles/10.5802/msia.32/

[1] Daniel C. Alexander; Penny L. Hubbard; Matt G. Hall; Elizabeth A. Moore; Maurice Ptito; Geoff J. M. Parker; Tim B. Dyrby Orientationally invariant indices of axon diameter and density from diffusion MRI, NeuroImage, Volume 52 (2010) no. 4, pp. 1374-1389 http://www.sciencedirect.com/science/article/pii/s1053811910007755 | DOI

[2] Giorgio A. Ascoli; Duncan E. Donohue; Maryam Halavi NeuroMorpho.Org: A Central Resource for Neuronal Morphologies, J. Neurosci., Volume 27 (2007) no. 35, pp. 9247-9251 | DOI

[3] Yaniv Assaf; Tamar Blumenfeld-Katzir; Yossi Yovel; Peter J. Basser Axcaliber: A method for measuring axon diameter distribution from diffusion MRI, Magn. Reson. Med., Volume 59 (2008) no. 6, pp. 1347-1354 | DOI

[4] D. Le Bihan; E. Breton; D. Lallemand; P. Grenier; E. Cabanis; M. Laval-Jeantet MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders, Radiology, Volume 161 (1986) no. 2, pp. 401-407 | DOI

[5] Elie Bretin; Imen Mekkaoui; Jérôme Pousin Assessment of the effect of tissue motion in diffusion MRI: Derivation of new apparent diffusion coefficient formula, Inverse Probl. Imaging, Volume 12 (2018) no. 1, pp. 125-152 | DOI | MR | Zbl

[6] Lauren M. Burcaw; Els Fieremans; Dmitry S. Novikov Mesoscopic structure of neuronal tracts from time-dependent diffusion, NeuroImage, Volume 114 (2015), pp. 18-37 | DOI

[7] Paul T. Callaghan; Janez Stepianik Frequency-Domain Analysis of Spin Motion Using Modulated-Gradient NMR, J Magn. Reson., A, Volume 117 (1995) no. 1, pp. 118-122 http://www.sciencedirect.com/science/article/pii/s1064185885799597 | DOI

[8] Mark D. Does; Edward C. Parsons; John C. Gore Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain, Magn. Reson. Med., Volume 49 (2003) no. 2, pp. 206-215 | DOI

[9] Chengran Fang; Van-Dang Nguyen; Demian Wassermann; Jing-Rebecca Li Diffusion MRI simulation of realistic neurons with SpinDoctor and the Neuron Module, NeuroImage, Volume 222 (2020), p. 117198 | DOI

[10] Els Fieremans; Jens H. Jensen; Joseph A. Helpern White matter characterization with diffusional kurtosis imaging, NeuroImage, Volume 58 (2011) no. 1, pp. 177-188 | DOI

[11] Erwin L. Hahn Spin Echoes, Phys. Rev., Volume 80 (1950), pp. 580-594 | DOI | Zbl

[12] Sune N. Jespersen; Christopher D. Kroenke; Leif Astergaard; Joseph J. H. Ackerman; Dmitriy A. Yablonskiy Modeling dendrite density from magnetic resonance diffusion measurements, NeuroImage, Volume 34 (2007) no. 4, pp. 1473-1486 http://www.sciencedirect.com/science/article/pii/s1053811906010950 | DOI

[13] Jing-Rebecca Li; Van-Dang Nguyen; Try Nguyen Tran; Jan Valdman; Cong-Bang Trang; Khieu Van Nguyen; Duc Thach Son Vu; Hoang An Tran; Hoang Trong An Tran; Thi Minh Phuong Nguyen SpinDoctor: A MATLAB toolbox for diffusion MRI simulation, NeuroImage, Volume 202 (2019), p. 116120 | DOI

[14] Imen Mekkaoui; Kevin Moulin; Pierre Croisille; Jérôme Pousin; Magalie Viallon Quantifying the effect of tissue deformation on diffusion-weighted MRI: a mathematical model and an efficient simulation framework applied to cardiac diffusion imaging, Phys. Med. Biol., Volume 61 (2016) no. 15, pp. 5662-5686 | DOI

[15] Imen Mekkaoui; Jérôme Pousin; Jan Hesthaven; Jing-Rebecca Li Apparent diffusion coefficient measured by diffusion MRI of moving and deforming domains, J. Magn. Reson., Volume 318 (2020), p. 106809 | DOI

[16] Lipeng Ning; Evren Özarslan; Carl-Fredrik Westin; Yogesh Rathi Precise Inference and Characterization of Structural Organization (PICASO) of tissue from molecular diffusion, NeuroImage, Volume 146 (2017), pp. 452-473 | DOI

[17] Marco Palombo; Clémence Ligneul; Chloé Najac; Juliette Le Douce; Julien Flament; Carole Escartin; Philippe Hantraye; Emmanuel Brouillet; Gilles Bonvento; Julien Valette New paradigm to assess brain cell morphology by diffusion-weighted MR spectroscopy in vivo, Proc. Natl. Acad. Sci. USA, Volume 113 (2016) no. 24, pp. 6671-6676 | arXiv | DOI

[18] Marco Palombo; Clémence Ligneul; Julien Valette Modeling diffusion of intracellular metabolites in the mouse brain up to very high diffusion-weighting: Diffusion in long fibers (almost) accounts for non-monoexponential attenuation, Magn. Reson. Med., Volume 77 (2017) no. 1, pp. 343-350 | DOI

[19] Eleftheria Panagiotaki; Torben Schneider; Bernard Siow; Matt G. Hall; Mark F. Lythgoe; Daniel C. Alexander Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison, NeuroImage, Volume 59 (2012) no. 3, pp. 2241-2254 http://www.sciencedirect.com/science/article/pii/s1053811911011566 | DOI

[20] Talal Rahman; Jan Valdman Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements, Appl. Math. Comput., Volume 219 (2013) no. 13, pp. 7151-7158 (ESCO 2010 Conference in Pilsen, June 21- 25, 2010) | DOI | MR | Zbl

[21] Simona Schiavi; Houssem Haddar; Jing-Rebecca Li A macroscopic model for the diffusion MRI signal accounting for time-dependent diffusivity, SIAM J. Appl. Math., Volume 76 (2016) no. 3, pp. 930-949 | MR | Zbl

[22] E. O. Stejskal; J. E. Tanner Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient, J. Chem. Phys., Volume 42 (1965) no. 1, pp. 288-292 | DOI

[23] Hui Zhang; Penny L. Hubbard; Geoff J. M. Parker; Daniel C. Alexander Axon diameter mapping in the presence of orientation dispersion with diffusion MRI, NeuroImage, Volume 56 (2011) no. 3, pp. 1301-1315 http://www.sciencedirect.com/science/article/pii/s1053811911001376 | DOI

[24] Hui Zhang; Torben Schneider; Claudia A. Wheeler-Kingshott; Daniel C. Alexander NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain, NeuroImage, Volume 61 (2012) no. 4, pp. 1000-1016 http://www.sciencedirect.com/science/article/pii/s1053811912003539 | DOI

Cité par Sources :