Continuous limits of large plant-pollinator random networks and some applications
MathematicS In Action, Tome 14 (2025) no. 1, pp. 23-54

We study a stochastic individual-based model of interacting plant and pollinator species through a bipartite graph: each species is a node of the graph, an edge representing interactions between a pair of species. The dynamics of the system depends on the between- and within-species interactions: pollination by insects increases plant reproduction rate but has a cost which can increase plant death rate, depending on the densities of pollinators. Pollinators reproduction is increased by the resources harvested on plants. Each species is characterized by a trait corresponding to its degree of generalism. This trait determines the structure of the interaction graph and the quantities of resources exchanged between species. Our model includes in particular nested or modular networks. Deterministic approximations of the stochastic measure-valued process by systems of ordinary differential equations or integro-differential equations are established and studied, when the population is large or when the graph is dense and can be replaced with a graphon. The long-time behaviors of these limits are studied and central limit theorems are established to quantify the difference between the discrete stochastic individual-based model and the deterministic approximations. Finally, studying the continuous limits of the interaction network and the resulting PDEs, we show that nested plant-pollinator communities are expected to collapse towards a coexistence between a single pair of species of plants and pollinators.

Publié le :
DOI : 10.5802/msia.42
Classification : 92D40, 92D25, 05C90, 60J80, 60F17, 47G20
Keywords: Ecological mutualistic community, birth and death process, interacting particles, limit theorem, kinetic limit, graphon, integro-differential equation, stationary solution

Sylvain Billiard  1   ; Hélène Leman  2   ; Thomas Rey  3   ; Viet Chi Tran  4

1 Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, 59000 Lille, France
2 Inria/Inserm CASTING team, Univ. Lyon, ENSL, UMPA, CNRS UMR 5669, 69364 Lyon, France
3 Univ. Côte d’Azur, CNRS, LJAD, F-06108 Nice, France
4 Univ. Lille, CNRS, Inria, UMR 8524 - Laboratoire Paul Painlevé, 59000 Lille, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{MSIA_2025__14_1_23_0,
     author = {Sylvain Billiard and H\'el\`ene Leman and Thomas Rey and Viet Chi Tran},
     title = {Continuous limits of large plant-pollinator random networks and some applications},
     journal = {MathematicS In Action},
     pages = {23--54},
     year = {2025},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {14},
     number = {1},
     doi = {10.5802/msia.42},
     language = {en},
     url = {https://msia.centre-mersenne.org/articles/10.5802/msia.42/}
}
TY  - JOUR
AU  - Sylvain Billiard
AU  - Hélène Leman
AU  - Thomas Rey
AU  - Viet Chi Tran
TI  - Continuous limits of large plant-pollinator random networks and some applications
JO  - MathematicS In Action
PY  - 2025
SP  - 23
EP  - 54
VL  - 14
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://msia.centre-mersenne.org/articles/10.5802/msia.42/
DO  - 10.5802/msia.42
LA  - en
ID  - MSIA_2025__14_1_23_0
ER  - 
%0 Journal Article
%A Sylvain Billiard
%A Hélène Leman
%A Thomas Rey
%A Viet Chi Tran
%T Continuous limits of large plant-pollinator random networks and some applications
%J MathematicS In Action
%D 2025
%P 23-54
%V 14
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U https://msia.centre-mersenne.org/articles/10.5802/msia.42/
%R 10.5802/msia.42
%G en
%F MSIA_2025__14_1_23_0
Sylvain Billiard; Hélène Leman; Thomas Rey; Viet Chi Tran. Continuous limits of large plant-pollinator random networks and some applications. MathematicS In Action, Tome 14 (2025) no. 1, pp. 23-54. doi: 10.5802/msia.42

[1] E. Abbe Community detection and stochastic block models: recent development, J. Mach. Learn. Res., Volume 18 (2018), 177, 86 pages | Zbl | MR

[2] I. Akjouj; M. Barbier; M. Clénet; W. Hachem; M. Maïda; F. Massol; J. Najim; V. C. Tran Complex systems in Ecology: A guided tour with large Lotka–Volterra models and random matrices, Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci., Volume 480 (2024) no. 2285, 20230284, 35 pages | Zbl | MR

[3] G. Ben Arous; Y. V. Fyodorov; B. A. Khoruzhenko Counting equilibria of large complex systems by instability index, Proc. Natl. Acad. Sci. USA, Volume 118 (2021) no. 34, e2023719118, 8 pages | Zbl | MR

[4] B. Arroyo-Correa; I. Bartomeus; P. Jordano Individual-based plant–pollinator networks are structured by phenotypic and microsite plant traits, J. Ecol., Volume 109 (2021) no. 8, pp. 2832-2844 | DOI

[5] V. Bansaye; S. Billiard; J. R. Chazottes Rejuvenating functional responses with renewal theory, J. R. Soc. Interface, Volume 15 (2018) no. 146, 20180239

[6] V. Bansaye; S. Méléard Stochastic models for structured populations. Scaling limits and long time behavior, Mathematical Biosciences Institute Lecture Series. Stochastics in Biological Systems, 1.4, Springer, 2015 | Zbl | MR

[7] M. Barbier; J. F. Arnoldi; G. Bunin; M. Loreau Generic assembly patterns in complex ecological communities, Proc. Natl. Acad. Sci. USA, Volume 115 (2018) no. 9, pp. 2156-2161 | DOI

[8] J. Bascompte; P. Jordano; C. Melian; J. M. Olesen The nested assembly of plant-animal mutualistic networks, Proc. Natl. Acad. Sci. USA, Volume 100 (2003) no. 16, pp. 9383-9387 | DOI

[9] N. Bellomo; A. Elaiw; A. M. Althiabi; M. A. Alghamdi On the interplay between mathematics and biology: Hallmarks toward a new systems biology, Phys. Life Rev., Volume 12 (2015), pp. 44-64 | DOI

[10] C. Berardo; S. Geritz; M. Gyllenberg; G. Raoul Interactions between different predator– prey states: a method for the derivation of the functional and numerical response, J. Math. Biol., Volume 80 (2020), pp. 2431-2468 | DOI | Zbl | MR

[11] P. Billingsley Convergence of Probability Measures, Wiley Series in Probability and Statistics, John Wiley & Sons, 1999 | DOI | Zbl | MR

[12] B. Bollobás Random graphs, Cambridge University Press, 2001 | DOI | Zbl

[13] C. Borgs; J. Chayes; L. Lovász; V. Sós; K. Vesztergombi Limits of randomly grown graph sequences, Eur. J. Comb., Volume 32 (2011) no. 7, pp. 985-999 | DOI | Zbl | MR

[14] G. Bunin Ecological communities with Lotka–Volterra dynamics, Phys. Rev. E, Volume 95 (2017) no. 4, 042414 | DOI | MR

[15] S. A. Chamberlain; R. V. Cartar; A. C. Worley; S. J. Semmler; G. Gielens; S. Elwell; M. E. Evans; J. C. Vamosi; E. Elle Traits and phylogenetic history contribute to network structure across canadian plant-pollinator communities, Oecologia, Volume 176 (2014), pp. 545-556 | DOI

[16] N. Champagnat; R. Ferrière; S. Méléard Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models via timescale separation, Theor. Popul. Biol., Volume 69 (2006), pp. 297-321 | DOI | Zbl

[17] J. E. Cohen; C. M. Newman When will a large complex system be stable?, J. Theor. Biol., Volume 113 (1985), pp. 153-156 | DOI | MR

[18] E. Delmas; M. Besson; M.-H. Brice; L. A. Burkle; G. V. Dalla Riva; M.-J. Fortin; D. Gravel; P. R. Jr. Guimaraes; D. H. Hembry; E. A. Newman; J. M. Olesen; M. M. Pires; J. D. Yeakel; T. Poisot Analysing ecological networks of species interactions, Biol. Rev., Volume 94 (2019) no. 1, pp. 16-36 | DOI

[19] L. Desvillettes; P. E. Jabin; S. Mischler; G. Raoul On selection dynamics for continuous structured populations, Commun. Math. Sci., Volume 6 (2008) no. 3, pp. 729-747 | DOI | Zbl | MR

[20] R. Durrett Random graph dynamics, Cambridge University Press, 2007 | Zbl | MR

[21] S. N. Ethier; T. G. Kurtz Markov Processus, Characterization and Convergence, John Wiley & Sons, 1986 | DOI | MR | Zbl

[22] R. Ferrière; V. C. Tran Stochastic and deterministic models for age-structured populations with genetically variable traits, ESAIM, Proc., Volume 27 (2009), pp. 289-310 | DOI | Zbl

[23] C. Fontaine; P. R. Jr. Guimaraes; S. Kéfi; E. Thébault The ecological and evolutionary implications of merging different types of networks, Ecol. Lett., Volume 14 (2011) no. 11, pp. 1170-1181 | DOI

[24] N. Fournier; S. Méléard A Microscopic Probabilistic Description of a Locally Regulated Population and Macroscopic Approximations, Ann. Appl. Probab., Volume 14 (2004) no. 4, pp. 1880-1919 | DOI | Zbl

[25] Y. V. Fyodorov; B. A. Khoruzhenko Nonlinear analogue of the May–Wigner instability transition, Proc. Natl. Acad. Sci. USA, Volume 113 (2016) no. 25, pp. 6827-6832 | DOI | MR | Zbl

[26] D. T. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions, J. Comput. Phys., Volume 22 (1976) no. 4, pp. 403-434 | DOI | MR

[27] D. T. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions, J. Phys. Chem., Volume 81 (1977) no. 25, pp. 2340-2361 | DOI

[28] P. R. Guimaraes The structure of ecological networks across levels of organization, Annu. Rev. Ecol. System., Volume 51 (2020) no. 1, pp. 433-460 | DOI

[29] R. Van der Hofstad Random Graphs and Complex Networks, Cambridge Series in Statistical and Probabilistic Mathematics, 1, Cambridge University Press, 2017 | Zbl

[30] J. N. Holland; J. L. Bronstein Mutualism, Encyclopedia of Ecology (Sven Erik Jørgensen; Brian D. Fath, eds.), Academic Press Inc. (2008), pp. 2485-2491 | DOI

[31] J. N. Holland; D. L DeAngelis A consumer–resource approach to the density-dependent population dynamics of mutualism, Ecology, Volume 91 (2010), pp. 1286-1295 | DOI

[32] P. Holland; K. Laskey; S. Leinhardt Stochastic blockmodels: some first steps, Social Netw., Volume 5 (1983), pp. 109-137 | DOI | MR

[33] N. Ikeda; S. Watanabe Stochastic Differential Equations and Diffusion Processes, North-Holland Mathematical Library, 24, North-Holland, 1989 | Zbl

[34] P. E. Jabin; G. Raoul On selection dynamics for competitive interactions, J. Math. Biol., Volume 63 (2011) no. 3, pp. 493-517 | DOI | MR | Zbl

[35] A. Joffe; M. Métivier Weak Convergence of Sequences of Semimartingales with Applications to Multitype Branching Processes, Adv. Appl. Probab., Volume 18 (1986), pp. 20-65 | DOI | Zbl

[36] E. Knop; L. Zoller; R. Ryser; C. Gerpe; M. Hörler; C. Fontaine Artificial light at night as a new threat to pollination, Nature, Volume 548 (2017) no. 7666, pp. 206-209 | DOI

[37] J. Jelle Lever; E. H. van Nes; M. Scheffer; J. Bascompte The sudden collapse of pollinator communities, Ecol. Lett., Volume 17 (2014) no. 3, pp. 350-359 | DOI

[38] L. Lovász Large Networks and Graph Limits, Colloquium Publications, 60, American Mathematical Society, 2012 | Zbl | MR

[39] R. M. May Will a large complex system be stable?, Nature, Volume 238 (1972), pp. 413-414 | DOI

[40] R. M. May Qualitative stability in model ecosystems, Ecology, Volume 54 (1973) no. 3, pp. 638-641 | DOI

[41] J. A. J. Metz; V. C. Tran Daphnias: from the individual based model to the large population equation, J. Math. Biol., Volume 66 (2013) no. 4-5, pp. 915-933 (Special issue in honor of Odo Diekmann) | DOI | Zbl | MR

[42] C. Pouchol; E. Trélat Global stability with selection in integro-differential Lotka–Volterra systems modelling trait-structured populations, J. Biol. Dyn., Volume 12 (2018) no. 1, pp. 872-893 | DOI | MR | Zbl

[43] J. A. Roughgarden Theory of population genetics and evolutionary ecology: an introduction, Macmillan, 1979

[44] Y. Takeuchi Global dynamical properties of Lotka–Volterra systems, World Scientific, 1996 | DOI | MR | Zbl

[45] S. Tang; S. Allesina Reactivity and stability of large ecosystems, Front. Ecol. Evol., Volume 2 (2014), 21 | DOI

[46] E. Thébault; C. Fontaine Stability of ecological communities and the architecture of mutualistic and trophic networks, Science, Volume 329 (2010) no. 5993, pp. 853-856 | DOI

[47] S. Villalobos; J. M. Sevenello-Montagner; J. C. Vamosi Specialization in plant–pollinator networks: insights from local-scale interactions in glenbow ranch provincial park in Alberta, Canada, BMC Ecol., Volume 19 (2019), 34 | DOI

[48] C. Villani Optimal transport: old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer, 2009 | DOI | MR | Zbl

[49] S. Watts; C. F. Dormann; A. M. Martín González; J. Ollerton The influence of floral traits on specialization and modularity of plant–pollinator networks in a biodiversity hotspot in the Peruvian Andes, Ann. Botany, Volume 118 (2016) no. 3, pp. 415-429 | DOI

Cité par Sources :