Radiative Heating of a Glass Plate
MathematicS In Action, Tome 5 (2012) no. 1, pp. 1-30.

This paper aims to prove existence and uniqueness of a solution to the coupling of a nonlinear heat equation with nonlinear boundary conditions with the exact radiative transfer equation, assuming the absorption coefficient κ(λ) to be piecewise constant and null for small values of the wavelength λ as in the paper of N. Siedow, T. Grosan, D. Lochegnies, E. Romero, “Application of a New Method for Radiative Heat Tranfer to Flat Glass Tempering”, J. Am. Ceram. Soc., 88(8):2181-2187 (2005). An important observation is that for a fixed value of the wavelength λ, Planck function is a Lipschitz function with respect to the temperature. Using this fact, we deduce that the solution is at most unique. To prove existence of a solution, we define a fixed point problem related to our initial boundary value problem to which we apply Schauder theorem in a closed convex subset of the Banach separable space L 2 (0,t f ;C([0,l])). We use also Stampacchia truncation method to derive lower and upper bounds on the solution.

Publié le :
DOI : https://doi.org/10.5802/msia.6
Classification : 35K20,  35K55,  35K58,  35K90,  35Q20,  35Q60,  35Q80
Mots clés : elementary pencil of rays, Planck function, radiative transfer equation, glass plate, nonlinear heat-conduction equation, Stampacchia truncation method, Schauder theorem, Vitali theorem.
@article{MSIA_2012__5_1_1_0,
     author = {Luc Paquet and Raouf El Cheikh and Dominique Lochegnies and Norbert Siedow},
     title = {Radiative {Heating} of a {Glass} {Plate}},
     journal = {MathematicS In Action},
     pages = {1--30},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {5},
     number = {1},
     year = {2012},
     doi = {10.5802/msia.6},
     mrnumber = {3015737},
     zbl = {1328.35240},
     language = {en},
     url = {https://msia.centre-mersenne.org/articles/10.5802/msia.6/}
}
TY  - JOUR
AU  - Luc Paquet
AU  - Raouf El Cheikh
AU  - Dominique Lochegnies
AU  - Norbert Siedow
TI  - Radiative Heating of a Glass Plate
JO  - MathematicS In Action
PY  - 2012
DA  - 2012///
SP  - 1
EP  - 30
VL  - 5
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://msia.centre-mersenne.org/articles/10.5802/msia.6/
UR  - https://www.ams.org/mathscinet-getitem?mr=3015737
UR  - https://zbmath.org/?q=an%3A1328.35240
UR  - https://doi.org/10.5802/msia.6
DO  - 10.5802/msia.6
LA  - en
ID  - MSIA_2012__5_1_1_0
ER  - 
Luc Paquet; Raouf El Cheikh; Dominique Lochegnies; Norbert Siedow. Radiative Heating of a Glass Plate. MathematicS In Action, Tome 5 (2012) no. 1, pp. 1-30. doi : 10.5802/msia.6. https://msia.centre-mersenne.org/articles/10.5802/msia.6/

[1] A. Ancona “Continuité des contractions dans les espaces de Dirichlet” Volume 563, Springer-Verlag, 1976 | MR 588389 | Zbl 0341.31006

[2] H. Brézis “Analyse fonctionnelle Théorie et applications”, Masson, Paris, 1993

[3] D. Clever; J. Lang Optimal Control of Radiative Heat Transfer in Glass Cooling with Restrictions on the Temperature Gradient, Optim. Control Appl. Meth. (2011) | Zbl 1258.49066

[4] L. Dautray; J.-L. Lions “Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques Volume 8 Evolution: semi-groupe, variationnel”, Masson, Paris, 1988 | Zbl 0749.35004

[5] F. Desvignes “Rayonnements optiques Radiométrie-Photométrie”, Masson, Paris, 1991

[6] P.-E. Druet Weak solutions to a time-dependent heat equation with nonlocal radiation boundary condition and arbitrary p-summable right-hand side, Applications of Mathematics, Volume 55 (2010) no. 2, pp. 111-149 | Article | MR 2600939 | Zbl 1224.35057

[7] L.C. Evans “Partial Differential Equations” Volume GSM 19, AMS Providence, Rhode Island, 1999

[8] A. Friedman “Partial Differential Equations”, Robert E. Krieger Publishing Company, 1976

[9] M. Hinze; R. Pinnau; M. Ulbrich; S. Ulbrich “Optimization with PDE constraints”, Springer, 2009 | Zbl 1167.49001

[10] H.C. Hottel; A.F. Sarofim “Radiative Transfer”, McGraw-Hill Book Company, 1967

[11] D. Kinderlehrer; G. Stampacchia “An Introduction to Variational Inequalities and their Applications”, Academic Press, 1980 | Zbl 0457.35001

[12] O.A. Ladyzenskaja; V.A. Solonnikov; N.N. Uralceva “Linear and Quasilinear Equations of Parabolic Type” Volume 23, Translations of Mathematical Monographs, AMS Providence, 1968 | MR 241822

[13] L.T. Laitinen “Mathematical modelling of conductive-radiative heat transfer” (2000) (Ph. D. Thesis)

[14] M.T. Laitinen; T. Tiihonen Integro-differential equation modelling heat transfer in conducting, radiating and semitransparent materials, Math. Methods Appl. Sci., Volume 21 (1998) no. 5, pp. 375-392 | Article | MR 1608072 | Zbl 0958.80003

[15] J. Lang Adaptive computation for boundary control of radiative heat transfer in glass, Journal of Computational and Applied Mathematics, Volume 183 (2005), pp. 312-326 | Article | MR 2158803 | Zbl 1100.65073

[16] J.-L. Lions “Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires”, Dunod, Paris, 1967 | Zbl 0189.40603

[17] A. Maréchal Optique Géométrique Générale, in Encyclopedia of Physics, volume XXIV: Fundamentals of Optics with 761 figures, edited by S. Flügge, Volume 24 (1956), pp. 44-170

[18] C.-M. Marle “Mesures et probabilités”, Hermann, 1974 | Zbl 0306.28001

[19] C. Meyer; P. Philip; F. Tröltzsch Optimal control of a semilinear PDE with nonlocal radiation interface conditions, SIAM J. Control Optim., Volume 45 (2006), pp. 699-721 | Article | MR 2246096 | Zbl 1109.49026

[20] M.F. Modest “Radiative Heat Transfer”, Academic Press, 2003

[21] D. Pascali; S. Sburlan “Non linear mappings of monotone type”, Editura Academiei, Bucuresti, Romania, Sijthoff & Noordhoff International Publishers, 1978 | Zbl 0392.47026

[22] R. Pinnau Analysis of optimal boundary control for radiative heat ransfer modeled by the SP 1 -system, Communications in Mathematical Sciences, Volume 5,4 (2007), pp. 951-969 | Article

[23] M. Planck “The theory of Heat Radiation”, Dover Publications Inc., 1991 | Zbl 0127.21701

[24] M. Reed; B. Simon “Methods of Modern Mathematical Physics I: Functional analysis”, Academic Press, 1972

[25] N. Siedow; T. Grosan; D. Lochegnies; E. Romero Application of a New Method for Radiative Heat Tranfer to Flat Glass Tempering, J. Am. Ceram. Soc., Volume 88 (2005) no. 8, pp. 2181-2187 | Article

[26] L. Soudre “Etude numérique et expérimentale du thermoformage d’une plaque de verre” (2009) (Ph. D. Thesis)

[27] J. Taine; E. Iacona; J.-P. Petit “Transferts Thermiques Introduction aux transferts d’énergie”, Dunod, 2008

[28] J. Taine; J.-P. Petit “Heat Transfer”, Prentice Hall, 1993 | Zbl 0818.73001

[29] K. Yosida “Functional Analysis”, Springer-Verlag, 1971 | Article | Zbl 0217.16001

Cité par Sources :