Fixed-Size Determinantal Point Processes Sampling For Species Phylogeny
MathematicS In Action, Tome 10 (2021) no. 1, pp. 1-13.

Determinantal point processes (DPPs) are popular tools that supply useful information for repulsiveness. They provide coherent probabilistic models when negative correlations arise and also represent new algorithms for inference problems like sampling, marginalization and conditioning. Recently, DPPs have played an increasingly important role in machine learning and statistics, since they are used for diverse subset selection problems. In this paper we use k-DPP, a conditional DPP that models only sets of cardinality k, to sample a diverse subset of species from a large phylogenetic tree. The tree sampling task is important in many studies in modern bioinformatics. The results show a fast mixing sampler for k-DPP, for which a polynomial bound on the mixing time is given. This approach is applied to a real-world dataset of species, and we observe that leaves joined by a higher subtree are more likely to appear.

Publié le :
Mots clés : Determinantal point process, Kernel, Markov chain, Metropolis-Hasting, Mixing time, Phylogenetic tree
     author = {Diala Wehbe and Nicolas Wicker and Baydaa Al-Ayoubi and Luc Moulinier},
     title = {Fixed-Size {Determinantal} {Point} {Processes} {Sampling} {For} {Species} {Phylogeny}},
     journal = {MathematicS In Action},
     pages = {1--13},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {10},
     number = {1},
     year = {2021},
     doi = {10.5802/msia.13},
     language = {en},
     url = {}
Diala Wehbe; Nicolas Wicker; Baydaa Al-Ayoubi; Luc Moulinier. Fixed-Size Determinantal Point Processes Sampling For Species Phylogeny. MathematicS In Action, Tome 10 (2021) no. 1, pp. 1-13. doi : 10.5802/msia.13.

[1] N. Anari; S. O. Gharan; A. Rezaei Monte Carlo Markov chain algorithms for sampling strongly Rayleigh distributions and determinantal point processes, In COLT (2016)

[2] J. Borcea; P. Branden; T. M. Liggett Negative dependence and the geometry of polynomials, J. Am. Math. Soc., Volume 22 (2009), pp. 521-567 | Article | MR 2476782 | Zbl 1206.62096

[3] A. Çivril; M. Magdon-Ismail On selecting a maximum volume sub-matrix of a matrix and related problems, Theor. Comput. Sci. (2009), pp. 4801-4811 | Article | MR 2583677 | Zbl 1181.15002

[4] D. M. Cvetkovic; M. Doob; H. Sachs Spectra of Graphs, Academic Press Inc., 1980 | Zbl 0458.05042

[5] A. Deshpande; L. Rademacher Efficient volume sampling for row/column subset selection, FOCS (2010) no. 1-3-4, pp. 329-338

[6] P. G. Doyle; J. L. Snell Random Walks and Electric Networks, Mathematical Association of America, 1984 | Zbl 0583.60065

[7] J. Ginibre Statistical ensembles of complex, quaternion,and real matrices, J. Math. Phys., Volume 6 (1965), pp. 440-449 | Article | MR 173726 | Zbl 0127.39304

[8] F. Gobel; A. Jagers Random walks on graphs., Stochastic Processes Appl., Volume 2 (1974), pp. 311-336 | Article | MR 397887 | Zbl 0296.60046

[9] B. Kang Fast determinantal point process sampling with application to clustering, NIPS (2013), pp. 2319-2327

[10] R. Kannan; S. Vempala Spectral algorithms, Foundations and Trends in Theoretical Computer Science, Volume 4 (2009), pp. 157-288 | Article | MR 2558901

[11] R. I. Kondor; J. Lafferty Diffusion kernels on graphs and other discrete structures, Proceedings of the 19th International Conference On Machine Learning (2002), pp. 315-322

[12] A. Kulesza; B. Taskar kDPPs: fixed size determinantal point processes, Proceedings of the 28th International Conference on Machine Learning, Omnipress, 2011, pp. 1193-1200

[13] A. Kulesza; B. Taskar Determinantal point processes for machine learning, Foundations and Trends in Machine Learning, Volume 5 (2012) no. 2-3, pp. 123-286 | Article | Zbl 1278.68240

[14] L. Lovász Random walks on graphs: A survey, Combinatorics, Volume 2 (1993), pp. 1-46

[15] O. Macchi The Coincidence approach to stochastic point processes, Adv. Appl. Probab., Volume 7 (1975) no. 1, pp. 83-122 | Article | MR 380979 | Zbl 0366.60081

[16] M. L. Mehta; M. Gaudin On the density of eigenvalues of a random matrix, Nuclear Physics, Volume 18 (1960), pp. 420-427 | Article | MR 112895 | Zbl 0107.35702

[17] R. Merris Laplacian matrices of graphs: A survey, Linear Algebra Appl., Volume 197-198 (1994), pp. 143-176 | Article | MR 1275613 | Zbl 0802.05053

[18] S. Pundir; M. J. Martin; C. O’Donovan UniProt Protein Knowledgebase, Methods Mol. Biol, Volume 1558 (2017), pp. 41-55 | Article