I develop a numerical algorithm for stochastic impulse control in the spirit of Regression Monte Carlo for optimal stopping. The approach consists in generating statistical surrogates (aka functional approximators) for the continuation function. The surrogates are recursively trained by empirical regression over simulated state trajectories. In parallel, the same surrogates are used to learn the intervention function characterizing the optimal impulse amounts. I discuss appropriate surrogate types for this task, as well as the choice of training sets. Case studies from forest rotation and irreversible investment illustrate the numerical scheme and highlight its flexibility and extensibility. Implementation in R is provided as a publicly available package posted on GitHub.
Mots-clés : Impulse Control, Statistical Surrogates, Irreversible Investment
@article{MSIA_2022__11_1_73_0, author = {Mike Ludkovski}, title = {Regression {Monte} {Carlo} for {Impulse} {Control}}, journal = {MathematicS In Action}, pages = {73--90}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {11}, number = {1}, year = {2022}, doi = {10.5802/msia.18}, language = {en}, url = {https://msia.centre-mersenne.org/articles/10.5802/msia.18/} }
TY - JOUR AU - Mike Ludkovski TI - Regression Monte Carlo for Impulse Control JO - MathematicS In Action PY - 2022 SP - 73 EP - 90 VL - 11 IS - 1 PB - Société de Mathématiques Appliquées et Industrielles UR - https://msia.centre-mersenne.org/articles/10.5802/msia.18/ DO - 10.5802/msia.18 LA - en ID - MSIA_2022__11_1_73_0 ER -
%0 Journal Article %A Mike Ludkovski %T Regression Monte Carlo for Impulse Control %J MathematicS In Action %D 2022 %P 73-90 %V 11 %N 1 %I Société de Mathématiques Appliquées et Industrielles %U https://msia.centre-mersenne.org/articles/10.5802/msia.18/ %R 10.5802/msia.18 %G en %F MSIA_2022__11_1_73_0
Mike Ludkovski. Regression Monte Carlo for Impulse Control. MathematicS In Action, Special issue Maths and Industry, Volume 11 (2022) no. 1, pp. 73-90. doi : 10.5802/msia.18. https://msia.centre-mersenne.org/articles/10.5802/msia.18/
[1] Explicit investment rules with time-to-build and uncertainty, J. Econ. Dyn. Control, Volume 51 (2015), pp. 240-256 | MR | Zbl
[2] A class of solvable impulse control problems, Appl. Math. Optim., Volume 49 (2004) no. 3, pp. 265-295 | DOI | MR | Zbl
[3] Optimal capital accumulation under price uncertainty and costly reversibility, J. Econ. Dyn. Control, Volume 35 (2011) no. 10, pp. 1769-1788 | DOI | MR | Zbl
[4] Optimal harvesting under resource stock and price uncertainty, J. Econ. Dyn. Control, Volume 31 (2007) no. 7, pp. 2461-2485 | DOI | MR | Zbl
[5] Taxation and rotation age under stochastic forest stand value, J. Environ. Econ. Manage., Volume 54 (2007) no. 1, pp. 113-127 | DOI | Zbl
[6] On the optimal stochastic impulse control of linear diffusions, SIAM J. Control Optim., Volume 47 (2008) no. 2, pp. 703-732 | DOI | MR | Zbl
[7] Optimal dividend payments for a two-dimensional insurance risk process, Eur. Actuar. J., Volume 9 (2019) no. 1, pp. 241-272 | DOI | MR | Zbl
[8] Convergence of implicit schemes for Hamilton–Jacobi–Bellman quasi-Variational inequalities, SIAM J. Control Optim., Volume 56 (2018) no. 6, pp. 3994-4016 | DOI | MR | Zbl
[9] Optimal price management in retail energy markets: an impulse control problem with asymptotic estimates, Math. Methods Oper. Res., Volume 89 (2019) no. 3, pp. 355-383 | DOI | MR | Zbl
[10] Optimal dividends in the dual model under transaction costs, Insur. Math. Econ., Volume 54 (2014), pp. 133-143 | DOI | MR | Zbl
[11] Inventory management with partially observed nonstationary demand, Ann. Oper. Res., Volume 176 (2010) no. 1, pp. 7-39 | DOI | MR | Zbl
[12] A general verification result for stochastic impulse control problems, SIAM J. Control Optim., Volume 55 (2017) no. 2, pp. 627-649 | DOI | MR | Zbl
[13] Sequential capacity expansion options, Oper. Res., Volume 67 (2019) no. 1, pp. 33-57 | DOI | MR | Zbl
[14] Optimality of an policy with compound Poisson and diffusion demands: A quasi-variational inequalities approach, SIAM J. Control Optim., Volume 44 (2005) no. 5, pp. 1650-1676 | DOI | MR | Zbl
[15] Classical and impulse stochastic control of the exchange rate using interest rates and reserves, Math. Finance, Volume 10 (2000) no. 2, pp. 141-156 | DOI | MR | Zbl
[16] Impulse control of multidimensional jump diffusions in finite time horizon, SIAM J. Control Optim., Volume 51 (2013) no. 3, pp. 2638-2663 | DOI | MR | Zbl
[17] On the solution of general impulse control problems using superharmonic functions, Stochastic Processes Appl., Volume 124 (2014) no. 1, pp. 709-729 | DOI | MR | Zbl
[18] De Finetti’s dividend problem and impulse control for a two-dimensional insurance risk process, Stoch. Models, Volume 27 (2011) no. 2, pp. 220-250 | DOI | MR | Zbl
[19] A direct solution method for stochastic impulse control problems of one-dimensional diffusions, SIAM J. Control Optim., Volume 47 (2008) no. 3, pp. 1191-1218 | DOI | MR | Zbl
[20] A dynamic look-ahead Monte Carlo algorithm for pricing Bermudan options, Ann. Appl. Probab., Volume 17 (2007) no. 4, pp. 1138-1171 | MR | Zbl
[21] Stochastic impulse control Problem with state and time dependent cost functions, Math. Control Relat. Fields, Volume 10 (2020) no. 4, p. 855 | DOI | MR | Zbl
[22] Zero-sum stochastic differential game in finite horizon involving impulse controls, Appl. Math. Optim., Volume 81 (2020) no. 3, pp. 1055-1087 | DOI | MR | Zbl
[23] Irreversible investment with fixed adjustment costs: a stochastic impulse control approach, Math. Financ. Econ., Volume 13 (2019) no. 4, pp. 579-616 | DOI | MR | Zbl
[24] Uncertainty and the trade-off between scale and flexibility in investment, J. Econ. Dyn. Control, Volume 36 (2012) no. 11, pp. 1718-1728 | DOI | MR | Zbl
[25] The elements of statistical learning: data mining, inference and prediction, Springer Series in Statistics, Springer, 2009 | DOI
[26] inventory systems with correlated demands, INFORMS J. Comput., Volume 28 (2016) no. 4, pp. 603-611 | MR | Zbl
[27] A regression-based smoothing spline Monte Carlo algorithm for pricing American options in discrete time, AStA, Adv. Stat. Anal., Volume 92 (2008) no. 2, pp. 153-178 | DOI | MR | Zbl
[28] Valuing American options by simulations: a simple least squares approach, Rev. Financ. Stud., Volume 14 (2001), pp. 113-148 | DOI
[29] mlOSP: Towards a Unified Implementation of Regression Monte Carlo Algorithms (2020) (https://arxiv.org/abs/2012.00729)
[30] Applied stochastic control of jump diffusions, 498, Springer, 2007 | DOI
[31] Regression Methods for Pricing Complex American-Style Options, IEEE Trans. Neural Netw., Volume 12 (2001) no. 4, pp. 694-703 | DOI
[32] Gaussian processes for machine learning, MIT Press, 2006
Cited by Sources: