We solve the problem of super-hedging European or Asian options for discrete-time financial market models where executable prices are uncertain. The risky asset prices are not described by single-valued processes but measurable selections of random sets that allows to consider a large variety of models including bid-ask models with order books, but also models with a delay in the execution of the orders. We provide a numerical procedure to compute the infimum price under a weak no-arbitrage condition, the so-called AIP condition, under which the prices of the non negative European options are non negative. This condition is weaker than the existence of a risk-neutral martingale measure but it is sufficient to numerically solve the super-hedging problem. We illustrate our method by a numerical example.
Mots-clés : Super-hedging prices, Delayed information, Uncertainty, Conditional random sets, AIP Condition
@article{MSIA_2022__11_1_193_0, author = {Meriam El Mansour and Emmanuel L\'epinette}, title = {Robust discrete-time super-hedging strategies under {AIP} condition and under price uncertainty}, journal = {MathematicS In Action}, pages = {193--212}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {11}, number = {1}, year = {2022}, doi = {10.5802/msia.24}, language = {en}, url = {https://msia.centre-mersenne.org/articles/10.5802/msia.24/} }
TY - JOUR AU - Meriam El Mansour AU - Emmanuel Lépinette TI - Robust discrete-time super-hedging strategies under AIP condition and under price uncertainty JO - MathematicS In Action PY - 2022 SP - 193 EP - 212 VL - 11 IS - 1 PB - Société de Mathématiques Appliquées et Industrielles UR - https://msia.centre-mersenne.org/articles/10.5802/msia.24/ DO - 10.5802/msia.24 LA - en ID - MSIA_2022__11_1_193_0 ER -
%0 Journal Article %A Meriam El Mansour %A Emmanuel Lépinette %T Robust discrete-time super-hedging strategies under AIP condition and under price uncertainty %J MathematicS In Action %D 2022 %P 193-212 %V 11 %N 1 %I Société de Mathématiques Appliquées et Industrielles %U https://msia.centre-mersenne.org/articles/10.5802/msia.24/ %R 10.5802/msia.24 %G en %F MSIA_2022__11_1_193_0
Meriam El Mansour; Emmanuel Lépinette. Robust discrete-time super-hedging strategies under AIP condition and under price uncertainty. MathematicS In Action, Special issue Maths and Industry, Volume 11 (2022) no. 1, pp. 193-212. doi : 10.5802/msia.24. https://msia.centre-mersenne.org/articles/10.5802/msia.24/
[1] A financial market with singular drift and no arbitrage, Math. Financ. Econ., Volume 15 (2021) no. 3, pp. 477-500 | DOI | MR | Zbl
[2] Pricing without martingale measures (2021) (https://hal.archives-ouvertes.fr/hal-01774150)
[3] Good deal hedging and valuation under combined uncertainty about drift and volatility, Probab. Uncertain. Quant. Risk, Volume 2 (2017), 13, 40 pages | MR | Zbl
[4] Hedging under generalized good-deal bounds and model uncertainty, Math. Methods Oper. Res., Volume 86 (2017), pp. 171-241 | DOI | MR | Zbl
[5] Data-driven robust optimization, Math. Program., Volume 167 (2018) no. 2, pp. 235-292 | DOI | MR | Zbl
[6] Robust fundamental theorem for continuous processes, Math. Finance, Volume 27 (2017) no. 4, pp. 963-987 | DOI | MR | Zbl
[7] Arbitrage in nondominated discrete-time models, Ann. Appl. Probab., Volume 25 (2015) no. 2, pp. 823-859 | MR | Zbl
[8] Universal arbitrage aggregator in discrete-time markets under uncertainty, Finance Stoch., Volume 20 (2016) no. 1, pp. 1-50 | DOI | MR | Zbl
[9] Viability and arbitrage under Knightian uncertainty, Swiss Finance Institute Research Paper, Volume 0 (2018), pp. 17-48 | Zbl
[10] Pricing without no-arbitrage condition in discrete-time, J. Math. Anal. Appl., Volume 505 (2022) no. 1, 125441, 21 pages | MR | Zbl
[11] The robust superreplication problem: a dynamic approach, SIAM J. Financial Math., Volume 10 (2019) no. 4, pp. 907-941 | DOI | MR | Zbl
[12] Duality formulas for robust pricing and hedging in discrete time, SIAM J. Financial Math., Volume 8 (2017), pp. 738-765 | DOI | MR | Zbl
[13] A fundamental theorem of asset pricing for continuous time large financial markets in a two filtration setting, Theory Probab. Appl., Volume 65 (2020) no. 3, pp. 388-404 | DOI
[14] No-arbitrage criteria for financial markets with transaction costs and incomplete information, Finance Stoch., Volume 11 (2007) no. 2, pp. 237-251 | DOI | MR | Zbl
[15] Conditional interior and conditional closure of a random set, J. Optim. Theory Appl., Volume 187 (2020) no. 2, pp. 356-369 | DOI | MR | Zbl
[16] Affine processes under parameter uncertainty, Probab. Uncertain. Quant. Risk, Volume 4 (2019), 5, 35 pages | MR | Zbl
[17] Robust hedging of the lookback option, Finance Stoch., Volume 2 (1998), pp. 329-347 | DOI | Zbl
[18] ption pricing with delayed information (2017) (https://www.researchgate.net/publication/318256675_Option_Pricing_with_Delayed_Information)
[19] The pricing of options for securities markets with delayed response, Math. Comput. Simul., Volume 75 (2007) no. 3-4, pp. 69-79 | DOI | MR | Zbl
[20] Risk, Uncertainty, and Profits, Houghton Mifflin, 1921
[21] Conditional cores and conditional convex hulls of random sets, J. Math. Anal. Appl., Volume 478 (2019) no. 2, pp. 368-392 | DOI | MR | Zbl
[22] Superreplication under volatility uncertainty for measurable claims, Electron. J. Probab., Volume 18 (2013), 48, 14 pages | MR | Zbl
[23] Robust estimation of superhedging prices, Ann. Stat., Volume 49 (2021) no. 1, pp. 508-530 | MR | Zbl
[24] Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations, Adv. Appl. Probab., Volume 43 (2011) no. 2, pp. 572-596 | DOI | MR | Zbl
[25] Portfolio diversification and model uncertainty: a robust dynamic mean-variance approach (2018) (https://arxiv.org/abs/1809.01464)
[26] Optimal portfolio in a multiple-priors model, Seminar on Stochastic Analysis, Random Fields and Applications IV (Progress in Probability), Volume 58, Birhäuser, 2004 | MR | Zbl
[27] On utility maximisation under model uncertainty in discrete-time markets, Math. Finance, Volume 31 (2021), pp. 149-175 | DOI
[28] Variational analysis, Grundlehren der Mathematischen Wissenschaften, 317, Springer, 1998 | DOI | Zbl
[29] Pricing of claims in discrete time with partial information, Appl. Math. Optim., Volume 68 (2013) no. 2, pp. 145-155 | DOI | MR | Zbl
[30] Stochastic control with delayed information and related nonlinear master equation, SIAM J. Control Optim., Volume 57 (2019) no. 1, pp. 693-717 | DOI | MR | Zbl
[31] Robust utility maximization for a diffusion market model with misspecified coefficients, Finance Stoch., Volume 17 (2009) no. 3, pp. 535-563 | DOI | MR | Zbl
Cited by Sources: