Quantitative assessment of hippocampal network dynamics by combining Voltage Sensitive Dye Imaging and Optimal Transportation Theory
MathematicS In Action, Maths Bio, Volume 12 (2023) no. 1, pp. 117-134.

For many years, voltage sensitive dye imaging (VSDI) has enabled the fruitful analysis of neuronal transmission by monitoring the spreading of neuronal signals. Although useful, the display of diffusion of neuronal depolarization provides insufficient information in the quest for a greater understanding of neuronal computation in brain function. Here, we propose the optimal mass transportation theory as a model to describe the dynamics of neuronal activity. More precisely, we use the solution of an L 2 -Monge–Kantorovich problem to model VSDI data, to extract the velocity and overall orientation of depolarization spreading in anatomically defined brain areas. The main advantage of this approach over earlier models (e.g. optical flow) is that the solution does not rely on intrinsic approximations or on additional arbitrary parameters, as shown from simple signal propagation examples. As proof of concept application of our model, we found that in the mouse hippocampal CA1 network, increasing Schaffers collaterals stimulation intensity leads to an increased VSDI-recorded depolarization associated with dramatic decreases in velocity and divergence of signal spreading. In addition, the pharmacological activation of cannabinoid type 1 receptors (CB1) leads to slight but significant decreases in neuronal depolarization and velocity of signal spreading in a region-specific manner within the CA1, indicating the reliability of the approach to identify subtle changes in circuit activity. Overall, our study introduces a novel approach for the analysis of optical imaging data, potentially highlighting new region-specific features of neuronal networks dynamics.

Published online:
DOI: 10.5802/msia.34
Classification: 00X99
Keywords: Hippocampus, VSDI, Optimal mass transportation problem, data analysis, CA1 network
Michelangelo Colavita 1; Afaf Bouharguane 2; Andrea Valenti 2; Geoffrey Terral 3; Mark W. Sherwood 4; Clement E. Lemercier 3; Fabien Gibergues 2; Marion Doubeck 2; Filippo Drago 5; Giovanni Marsicano 3; Angelo Iollo 2; Federico Massa 3

1 INSERM U1215, NeuroCentre Magendie, Team “Endocannabinoids and Neuroadaptation”, Bordeaux, France and Université de Bordeaux, Bordeaux, France and University of Catania, Biometec Department of Biomedical and Biotechnological Sciences, Catania, Italy
2 Université de Bordeaux, Bordeaux, France and Institut de Mathématiques de Bordeaux UMR 5251 and INRIA Bordeaux-Sud Ouest, Talence, France
3 INSERM U1215, NeuroCentre Magendie, Team “Endocannabinoids and Neuroadaptation”, Bordeaux, France and Université de Bordeaux, Bordeaux, France
4 Université de Bordeaux, Bordeaux, France
5 University of Catania, Biometec Department of Biomedical and Biotechnological Sciences, Catania, Italy
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{MSIA_2023__12_1_117_0,
     author = {Michelangelo Colavita and Afaf Bouharguane and Andrea Valenti and Geoffrey Terral and Mark W. Sherwood and Clement E. Lemercier and Fabien Gibergues and Marion Doubeck and Filippo Drago and Giovanni Marsicano and Angelo Iollo and Federico Massa},
     title = {Quantitative assessment of hippocampal network dynamics by combining {Voltage} {Sensitive} {Dye} {Imaging} and {Optimal} {Transportation} {Theory}},
     journal = {MathematicS In Action},
     pages = {117--134},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {12},
     number = {1},
     year = {2023},
     doi = {10.5802/msia.34},
     language = {en},
     url = {https://msia.centre-mersenne.org/articles/10.5802/msia.34/}
}
TY  - JOUR
AU  - Michelangelo Colavita
AU  - Afaf Bouharguane
AU  - Andrea Valenti
AU  - Geoffrey Terral
AU  - Mark W. Sherwood
AU  - Clement E. Lemercier
AU  - Fabien Gibergues
AU  - Marion Doubeck
AU  - Filippo Drago
AU  - Giovanni Marsicano
AU  - Angelo Iollo
AU  - Federico Massa
TI  - Quantitative assessment of hippocampal network dynamics by combining Voltage Sensitive Dye Imaging and Optimal Transportation Theory
JO  - MathematicS In Action
PY  - 2023
SP  - 117
EP  - 134
VL  - 12
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://msia.centre-mersenne.org/articles/10.5802/msia.34/
DO  - 10.5802/msia.34
LA  - en
ID  - MSIA_2023__12_1_117_0
ER  - 
%0 Journal Article
%A Michelangelo Colavita
%A Afaf Bouharguane
%A Andrea Valenti
%A Geoffrey Terral
%A Mark W. Sherwood
%A Clement E. Lemercier
%A Fabien Gibergues
%A Marion Doubeck
%A Filippo Drago
%A Giovanni Marsicano
%A Angelo Iollo
%A Federico Massa
%T Quantitative assessment of hippocampal network dynamics by combining Voltage Sensitive Dye Imaging and Optimal Transportation Theory
%J MathematicS In Action
%D 2023
%P 117-134
%V 12
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U https://msia.centre-mersenne.org/articles/10.5802/msia.34/
%R 10.5802/msia.34
%G en
%F MSIA_2023__12_1_117_0
Michelangelo Colavita; Afaf Bouharguane; Andrea Valenti; Geoffrey Terral; Mark W. Sherwood; Clement E. Lemercier; Fabien Gibergues; Marion Doubeck; Filippo Drago; Giovanni Marsicano; Angelo Iollo; Federico Massa. Quantitative assessment of hippocampal network dynamics by combining Voltage Sensitive Dye Imaging and Optimal Transportation Theory. MathematicS In Action, Maths Bio, Volume 12 (2023) no. 1, pp. 117-134. doi : 10.5802/msia.34. https://msia.centre-mersenne.org/articles/10.5802/msia.34/

[1] Raag D. Airan; Leslie A. Meltzer; Madhuri Roy; Yuqing Gong; Han Chen; Karl Deisseroth High-speed imaging reveals neurophysiological links to behavior in an animal model of depression, Science, Volume 317 (2007), pp. 819-823 | DOI

[2] Chyze W. Ang; Gregory C. Carlson; Douglas A. Coulter Massive and specific dysregulation of direct cortical input to the hippocampus in temporal lobe epilepsy, J. Neurosci., Volume 26 (2006), pp. 11850-11856

[3] Jean-David Benamou Numerical resolution of an“unbalanced” mass transport problem, M2AN, Math. Model. Numer. Anal., Volume 37 (2003) no. 5, pp. 851-868 | DOI | Numdam | MR | Zbl

[4] Jean-David Benamou; Yann Brenier A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem, Numer. Math., Volume 84 (2000), pp. 375-393 | DOI | MR | Zbl

[5] Afaf Bouharguane; Angelo Iollo; Lisl Weynans Numerical solution of the Monge–Kantorovich problem by density lift-up continuation, ESAIM, Math. Model. Numer. Anal., Volume 49 (2015) no. 6, pp. 1577-1592 | DOI | Numdam | MR | Zbl

[6] Yann Brenier Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., Volume 44 (1991) no. 4, pp. 375-417 | DOI | MR | Zbl

[7] Yann Brenier Optimal transport, convection, magnetic relaxation and generalized Boussinesq equations, J. Nonlinear Sci., Volume 19 (2009) no. 5, pp. 547-570 | DOI | MR | Zbl

[8] Arnau Busquets-Garcia; Jaideep Bains; Giovanni Marsicano CB 1 Receptor Signaling in the Brain: Extracting Specificity from Ubiquity., Neuropsychopharmacology, Volume 43 (2018) no. 1, pp. 4-20 | DOI

[9] Payne Y. Chang; Meyer B. Jackson Heterogeneous spatial patterns of long-term potentiation in rat hippocampal slices, J. Physiol., Volume 576 (2006), pp. 427-443 | DOI

[10] S. Chemla; F. Chavane Voltage-sensitive dye imaging: Technique review and models, J. Physiol. Paris, Volume 104 (2010), pp. 40-50 | DOI

[11] Lénaïc Chizat; Gabriel Peyré; Bernhard Schmitzer; François-Xavier Vialard Unbalanced optimal transport: Dynamic and Kantorovich formulations, J. Funct. Anal., Volume 274 (2018) no. 11, pp. 3090-3123 | DOI | MR | Zbl

[12] Graziano Crasta; Annalisa Malusa A Variational Approach to the Macroscopic Electrodynamics of Anisotropic Hard Superconductors, Arch. Ration. Mech. Anal., Volume 192 (2008), pp. 87-115 | DOI | Zbl

[13] Lawrence C. Evans; Mikhail Feldman; Ronald F. Gariepy Fast/slow diffusion and collapsing sandpiles, J. Differ. Equations, Volume 137 (1997) no. 1, pp. 166-209 | DOI | MR | Zbl

[14] Ureil Frisch; Sabino Matarrese; Roya Mohayaee; Andrei Sobolevski A reconstruction of the initial conditions of the universe by optimal mass transportation, Nature, Volume 417 (2002), pp. 260-262 | DOI

[15] A. Grinvald; R. Hildesheim VSDI: a new era in functional imaging of cortical dynamics, Nat. Rev. Neurosci., Volume 5 (2004), pp. 874-885 | DOI

[16] A. Grinvald; A. Manker; M. Segal Visualization of the spread of electrical activity in rat hippocampal slices by voltage-sensitive optical probes, J. Physiol., Volume 333 (1982), pp. 269-291 | DOI

[17] Berthold K. P. Horn; Brian G. Schunck Determining optical flow, Artif. Intell., Volume 17 (1981) no. 1-3, pp. 185-203 | DOI | Zbl

[18] Angelo Iollo; Damiano Lombardi A lagrangian scheme for the solution of the optimal mass transfer problem, J. Comput. Phys., Volume 230 (2011) no. 9, pp. 3430-3442 | DOI | MR | Zbl

[19] Matt Jacobs; Flavien Léger A fast approach to optimal transport: The back-and-forth method, Numer. Math., Volume 146 (2019) no. 3, pp. 513-544 | DOI | MR | Zbl

[20] Ian T. Jolliffe Principal Component Analysis, Springer Series in Statistics, Springer, 2002

[21] Masanobu Kano; Takako Ohno Shosaku; Yuki Hashimotodani; Motokuza Uchigashima; Masahiko Watanabe Endocannabinoid-mediated control of synaptic transmission, Physiol. Rev., Volume 89 (2009), pp. 309-380 | DOI

[22] Bruce D. Lucas; Takeo Kanade An iterative image registration technique with an application to stereo vision, Proceedings of the 7th international joint conference on Artificial intelligence, Volume 2 (1981), pp. 674-679

[23] Valentin Markounikau; Christian Igel; Amiram Grinvald; Dirk Jancke A dynamic neural field model of mesoscopic cortical activity captured with voltage-sensitive dye imaging, PLoS Comput. Biol., Volume 6 (2010), e1000919 | DOI | MR

[24] Giovanni Marsicano; Beat Lutz Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain, Eur. J. Neurosci., Volume 11 (1991)

[25] Bertrand Maury; Juliette Venel A mathematical framework for a crowd motion model, C. R. Math. Acad. Sci. Paris, Volume 346 (2008) no. 23-24, pp. 1245-1250 | DOI | Numdam | MR | Zbl

[26] Nicholas D. Olivas; Victor Quintanar-Zilinskas; Zoran Nenadic; Xiangmin Xu Laminar circuit organization and response modulation in mouse visual cortex, Front. Neural Circuits, Volume 6 (2012), 70 | DOI

[27] D. S. Peterka; H. Takahashi; R. Yuste Imaging voltage in neurons, Neuron, Volume 69 (2011), pp. 9-21 | DOI

[28] Per E. Roland; Akitoshi Hanazawa; Calle Undeman; David Eriksson; Tamas Tompa; Hiroyuki Nakamura; Sonate Valentiniene; Bashir Ahmed Cortical feedback depolarization waves: a mechanism of top-down influence on early visual areas, Proc. Natl. Acad. Sci. USA, Volume 103 (2006), pp. 12586-12591 | DOI

[29] Frauke Steindel; Raissa Lerner; Märing Haring; Sabine Ruehle; Giovanni Marsicano; Beat Lutz; Krisztina Monory Neuron-type specific cannabinoid-mediated G protein signalling in mouse hippocampus, J. Neurochem., Volume 124 (2013), pp. 795-807 | DOI

[30] Kentaroh Takagaki; Chuan Zhang; Jian-Young Wu; Michael Lippert Crossmodal propagation of sensory-evoked and spontaneous activity in the rat neocortex, Neurosci. Lett., Volume 431 (2008), pp. 191-196 | DOI

[31] Takashi Tominaga; Yoko Tominaga; Hitoshi Yamada; Gen Matsumoto; Michinori Ichikawa Quantification of optical signals with electrophysiological signals in neural activities of Di-4-ANEPPS stained rat hippocampal slices, J. Neurosci. Methods, Volume 102 (2000) no. 1, pp. 11-23 | DOI

[32] Cédric Villani Topics in optimal transportation, Graduate Studies in Mathematics, 50, American Mathematical Society, 2003

[33] Cédric Villani Optimal Transport, Old and New, Grundlehren der Mathematischen Wissenschaften, 338, Springer, 2009 | DOI

[34] Weifeng Xu; Xiaoying Huang; Kentaroh Takagaki; Jian-Young Wu Compression and reflection of visually evoked cortical waves, Neuron, Volume 55 (2000), pp. 119-129

Cited by Sources: