Classifying and explaining defects with small data for the semiconductor industry
MathematicS In Action, Volume 11 (2022) no. 1, pp. 109-114.

In this work, we present an automatic classifier of wafer defects for the semiconductor industry. Hopefully defects are rare, but this puts the classifying problem in a small data context. We propose a fast and fully reproducible approach based on decision trees. The main interest of using decision trees lies in obtaining a highly explicable classifier, which makes the origin of the defect easy to identify.

Published online:
DOI: 10.5802/msia.20
Jean-François Boulanger 1; Franck Corset 2; Franck Iutzeler 2; Jérôme Lelong 2

1 Unity SC , 611 rue Aristide Bergès, Z.A. de Pré Millet, 38330, Montbonnot-Saint-Martin, France
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{MSIA_2022__11_1_109_0,
     author = {Jean-Fran\c{c}ois Boulanger and Franck Corset and Franck Iutzeler and J\'er\^ome Lelong},
     title = {Classifying and explaining defects with small data for the semiconductor industry},
     journal = {MathematicS In Action},
     pages = {109--114},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     number = {1},
     year = {2022},
     doi = {10.5802/msia.20},
     language = {en},
     url = {https://msia.centre-mersenne.org/articles/10.5802/msia.20/}
}
TY  - JOUR
AU  - Jean-François Boulanger
AU  - Franck Corset
AU  - Franck Iutzeler
AU  - Jérôme Lelong
TI  - Classifying and explaining defects with small data for the semiconductor industry
JO  - MathematicS In Action
PY  - 2022
DA  - 2022///
SP  - 109
EP  - 114
VL  - 11
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://msia.centre-mersenne.org/articles/10.5802/msia.20/
UR  - https://doi.org/10.5802/msia.20
DO  - 10.5802/msia.20
LA  - en
ID  - MSIA_2022__11_1_109_0
ER  - 
%0 Journal Article
%A Jean-François Boulanger
%A Franck Corset
%A Franck Iutzeler
%A Jérôme Lelong
%T Classifying and explaining defects with small data for the semiconductor industry
%J MathematicS In Action
%D 2022
%P 109-114
%V 11
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U https://doi.org/10.5802/msia.20
%R 10.5802/msia.20
%G en
%F MSIA_2022__11_1_109_0
Jean-François Boulanger; Franck Corset; Franck Iutzeler; Jérôme Lelong. Classifying and explaining defects with small data for the semiconductor industry. MathematicS In Action, Volume 11 (2022) no. 1, pp. 109-114. doi : 10.5802/msia.20. https://msia.centre-mersenne.org/articles/10.5802/msia.20/

[1] Leo Breiman; Jerome Friedman; Richard A. Olshen; Charles J. Stone Classification and regression trees, Routledge, 2017 | DOI

[2] László Györfi; Michael Kohler; Adam Krzyżak; Harro Walk A distribution-free theory of nonparametric regression, 1, Springer, 2002 | DOI

[3] Trevor Hastie; Robert Tibshirani; Jerome Friedman The elements of statistical learning: data mining, inference, and prediction, Springer, 2009 | DOI

[4] Fabian Pedregosa; Gaël Varoquaux; Alexandre Gramfort; Vincent Michel; Bertrand Thirion; Olivier Grisel; Mathieu Blondel; Peter Prettenhofer; Ron Weiss; Vincent Dubourg et al. Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., Volume 12 (2011), pp. 2825-2830 | MR | Zbl

Cited by Sources: