In this work, we present an automatic classifier of wafer defects for the semiconductor industry. Hopefully defects are rare, but this puts the classifying problem in a small data context. We propose a fast and fully reproducible approach based on decision trees. The main interest of using decision trees lies in obtaining a highly explicable classifier, which makes the origin of the defect easy to identify.
@article{MSIA_2022__11_1_109_0, author = {Jean-Fran\c{c}ois Boulanger and Franck Corset and Franck Iutzeler and J\'er\^ome Lelong}, title = {Classifying and explaining defects with small data for the semiconductor industry}, journal = {MathematicS In Action}, pages = {109--114}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {11}, number = {1}, year = {2022}, doi = {10.5802/msia.20}, language = {en}, url = {https://msia.centre-mersenne.org/articles/10.5802/msia.20/} }
TY - JOUR AU - Jean-François Boulanger AU - Franck Corset AU - Franck Iutzeler AU - Jérôme Lelong TI - Classifying and explaining defects with small data for the semiconductor industry JO - MathematicS In Action PY - 2022 SP - 109 EP - 114 VL - 11 IS - 1 PB - Société de Mathématiques Appliquées et Industrielles UR - https://msia.centre-mersenne.org/articles/10.5802/msia.20/ DO - 10.5802/msia.20 LA - en ID - MSIA_2022__11_1_109_0 ER -
%0 Journal Article %A Jean-François Boulanger %A Franck Corset %A Franck Iutzeler %A Jérôme Lelong %T Classifying and explaining defects with small data for the semiconductor industry %J MathematicS In Action %D 2022 %P 109-114 %V 11 %N 1 %I Société de Mathématiques Appliquées et Industrielles %U https://msia.centre-mersenne.org/articles/10.5802/msia.20/ %R 10.5802/msia.20 %G en %F MSIA_2022__11_1_109_0
Jean-François Boulanger; Franck Corset; Franck Iutzeler; Jérôme Lelong. Classifying and explaining defects with small data for the semiconductor industry. MathematicS In Action, Special issue Maths and Industry, Volume 11 (2022) no. 1, pp. 109-114. doi : 10.5802/msia.20. https://msia.centre-mersenne.org/articles/10.5802/msia.20/
[1] Classification and regression trees, Routledge, 2017 | DOI
[2] A distribution-free theory of nonparametric regression, 1, Springer, 2002 | DOI
[3] The elements of statistical learning: data mining, inference, and prediction, Springer, 2009 | DOI
[4] et al. Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., Volume 12 (2011), pp. 2825-2830 | MR | Zbl
Cited by Sources: