Maths in Action in Contemporary Archaeology: numerical simulation of fire propagation in Roman buildings
MathematicS In Action, Volume 11 (2022) no. 1, pp. 115-127.

This short paper explores the possibility of conducting high-performance computing simulations of complex fire propagation in buildings of archaeological interest. The simulation protocol described here involves several steps: (i) the geometric modelling of the buildings, (ii) the mathematical modelling of combustion and fire propagation, (iii) the numerical simulation using a Large Eddy Simulation approach on parallel systems and (iv) the real time rendering of the simulation data. Numerical examples are provided to emphasize the efficiency of the approach and its importance in supporting research in archaeology and validating hypotheses through simulation.

Published online:
DOI: 10.5802/msia.21
Classification: 00X99
Keywords: Example, Applied mathematics, Journal
Pascal Frey 1; Nicolas Leys 2; Clément Scherding 3

1 Sorbonne Université, CNRS, Laboratoire J.L. Lions, UMR 7598, 75005 Paris, France
2 Sorbonne Université, Rome et ses renaissances, EA 4081, 75005 Paris, France
3 Sorbonne Université, Institut des Sciences du Calcul et des Données, 75005 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{MSIA_2022__11_1_115_0,
     author = {Pascal Frey and Nicolas Leys and Cl\'ement Scherding},
     title = {Maths in {Action} in {Contemporary} {Archaeology:} numerical simulation of fire propagation in {Roman} buildings},
     journal = {MathematicS In Action},
     pages = {115--127},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     number = {1},
     year = {2022},
     doi = {10.5802/msia.21},
     language = {en},
     url = {https://msia.centre-mersenne.org/articles/10.5802/msia.21/}
}
TY  - JOUR
AU  - Pascal Frey
AU  - Nicolas Leys
AU  - Clément Scherding
TI  - Maths in Action in Contemporary Archaeology: numerical simulation of fire propagation in Roman buildings
JO  - MathematicS In Action
PY  - 2022
DA  - 2022///
SP  - 115
EP  - 127
VL  - 11
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://msia.centre-mersenne.org/articles/10.5802/msia.21/
UR  - https://doi.org/10.5802/msia.21
DO  - 10.5802/msia.21
LA  - en
ID  - MSIA_2022__11_1_115_0
ER  - 
%0 Journal Article
%A Pascal Frey
%A Nicolas Leys
%A Clément Scherding
%T Maths in Action in Contemporary Archaeology: numerical simulation of fire propagation in Roman buildings
%J MathematicS In Action
%D 2022
%P 115-127
%V 11
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U https://doi.org/10.5802/msia.21
%R 10.5802/msia.21
%G en
%F MSIA_2022__11_1_115_0
Pascal Frey; Nicolas Leys; Clément Scherding. Maths in Action in Contemporary Archaeology: numerical simulation of fire propagation in Roman buildings. MathematicS In Action, Volume 11 (2022) no. 1, pp. 115-127. doi : 10.5802/msia.21. https://msia.centre-mersenne.org/articles/10.5802/msia.21/

[1] Blender Online Community Blender - a 3D modelling and rendering package, 2018 (Blender Foundation, http://www.blender.org)

[2] Mathilde Carrive Rome et Ostie en regard : modes d’habiter de l’élite au IIe s. ap. J.-C., École française de Rome, 2016 (http://journals.openedition.org/mefra/3353)

[3] James W. Deardorff Stratocumulus-capped mixed layers derived from a three-dimensional model, Boundary-Layer Meteorology, Volume 18 (1980) no. 4, pp. 495-527 | DOI

[4] Epic Games Unreal Engine, 2019 (https://www.unrealengine.com, version 4.22.1)

[5] G. P. Forney Smokeview (Version 5)-A Tool for Visualizing Fire Dynamics Simulation Data, Volume I: User’s Guide, 2017

[6] Jack Philip Holman Heat transfer, McGraw-Hill, 1986

[7] C. Lapuerta; S. Suard; F. Babik; L. Rigollet Validation process of ISIS CFD software for fire simulation, Nuclear Engineering and Design, Volume 253 (2012), pp. 367-373 | DOI

[8] Marcel Lesieur; Olivier Metais New trends in large-eddy simulations of turbulence, Annual Review of Fluid Mechanics, Volume 28 (1996) no. 1, pp. 45-82 | DOI

[9] N. Leys L’incendie à Rome dans l’Antiquité : analyses cartographiques, simulation de propagation et visualisation, Ph. D. Thesis, Sorbonne Université (2021)

[10] A. Marinucci L’insula ostiense di Diana (R. I, III, 3-4), Fondazione Portus, 2013

[11] Kevin McGrattan; Howard Baum; Ronald Rehm Fire dynamics simulator (version 5) technical reference guide (2008) no. 5 (Technical report)

[12] James E. Packer The insulae of imperial Ostia, Memoirs of the American Academy in Rome, 31, American Academy in Rome, 1971

[13] Stephen B. Pope Turbulent flows, Cambridge University Press, 2000 | DOI | Zbl

[14] R. Sablayrolles Libertinus Miles. Les cohortes de vigiles, Publications de l’Ecole française de Rome, 1996

[15] C. Scherding Modélisation et Simulation d’Incendies dans les Insulae Romaines, Masters thesis, Sorbonne Université (2020)

[16] Okorie Ukairo; Siaka Dembele; Ali Heidari; Hugues Pretrel; Jennifer Wen Investigation of fires in a mechanically ventilated compartment using the CFD code FireFOAM, Nuclear Engineering and Design, Volume 384 (2021), p. 111515 | DOI

[17] Jonathan Wahlqvist; Patrick Van Hees Validation of FDS for large-scale well-confined mechanically ventilated fire scenarios with emphasis on predicting ventilation system behavior, Fire Safety Journal, Volume 62 (2013), pp. 102-114 | DOI

Cited by Sources: