Tetrahedral remeshing in the context of large-scale numerical simulation and high performance computing
MathematicS In Action, Volume 11 (2022) no. 1, pp. 129-164.

The purpose of this article is to discuss several modern aspects of remeshing, which is the task of modifying an ill-shaped tetrahedral mesh with bad size elements so that it features an appropriate density of high-quality elements. After a brief sketch of classical stakes about meshes and local mesh operations, we notably expose (i) how the local size of the elements of a mesh can be adapted to a user-defined prescription (guided, e.g., by an error estimate attached to a numerical simulation), (ii) how a mesh can be deformed to efficiently track the motion of the underlying domain, (iii) how to construct a mesh of an implicitly-defined domain, and (iv) how remeshing procedures can be conducted in a parallel fashion when large-scale applications are targeted. These ideas are illustrated with several applications involving high-performance computing. In particular, we show how mesh adaptation and parallel remeshing strategies make it possible to achieve a high accuracy in large-scale simulations of complex flows, and how the aforementioned methods for meshing implicitly defined surfaces allow to represent faithfully intricate geophysical interfaces, and to account for the dramatic evolutions of shapes featured by shape optimization processes.

Published online:
DOI: 10.5802/msia.22
Classification: 65X50,  65Y05,  90C06
Keywords: remeshing, implicit domain meshing, level-set discretization, topology optimization, mesh adaptation, h-adaptation, error estimator, metric, “lagrangian” mesh deformation, distributed memory parallel remeshing, hybrid RANS/LES, LES, geophysical inverse problem
G. Balarac 1; F. Basile 2; P. Bénard 3; F. Bordeu 4; J.-B. Chapelier 5; L. Cirrottola 6; G. Caumon 7; C. Dapogny 8; P. Frey 9; A. Froehly 10; G. Ghigliotti 11; R. Laraufie 12; G. Lartigue 3; C. Legentil 7; R. Mercier 4; V. Moureau 3; C. Nardoni 13; S. Pertant 11; M. Zakari 7

1 Univ Grenoble Alpes, CNRS, Grenoble INP, LEGI UMR 5519, 38000 Grenoble, France
2 ONERA - Université Paris-Saclay, 92322 Châtillon, France; Airbus Operations SAS, 31060 Toulouse, France
3 CORIA, Normandie Univ, UNIROUEN, INSA Rouen, CNRS, 76000 Rouen, France
4 SAFRAN Tech, Digital Sciences & Technologies, Rue des Jeunes Bois, 78114 Magny-Les-Hameaux, France
5 ONERA - Université Paris-Saclay, 92322 Châtillon, France
6 INRIA, Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, 33405 Talence cedex, France
7 Université de Lorraine, CNRS, GeoRessources, 54000 Nancy, France
8 Univ Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
9 Sorbonne Université, CNRS, Laboratoire J.L. Lions, UMR 7598, 75005 Paris, France
10 INRIA Service d’Expérimentation et de Développement, 33405 Talence cedex, France
11 Univ Grenoble Alpes, CNRS, Grenoble INP, LEGI UMR 5519, F-38000 Grenoble, France
12 Airbus Operations SAS, 31060 Toulouse, France
13 Institut de Recherche Technologique SystemX, 2 Boulevard Thomas Gobert 91120 Palaiseau, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {G. Balarac and F. Basile and P. B\'enard and F. Bordeu and J.-B. Chapelier and L. Cirrottola and G. Caumon and C. Dapogny and P. Frey and A. Froehly and G. Ghigliotti and R. Laraufie and G. Lartigue and C. Legentil and R. Mercier and V. Moureau and C. Nardoni and S. Pertant and M. Zakari},
     title = {Tetrahedral remeshing in the context of large-scale numerical simulation and high performance computing},
     journal = {MathematicS In Action},
     pages = {129--164},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     number = {1},
     year = {2022},
     doi = {10.5802/msia.22},
     language = {en},
     url = {https://msia.centre-mersenne.org/articles/10.5802/msia.22/}
AU  - G. Balarac
AU  - F. Basile
AU  - P. Bénard
AU  - F. Bordeu
AU  - J.-B. Chapelier
AU  - L. Cirrottola
AU  - G. Caumon
AU  - C. Dapogny
AU  - P. Frey
AU  - A. Froehly
AU  - G. Ghigliotti
AU  - R. Laraufie
AU  - G. Lartigue
AU  - C. Legentil
AU  - R. Mercier
AU  - V. Moureau
AU  - C. Nardoni
AU  - S. Pertant
AU  - M. Zakari
TI  - Tetrahedral remeshing in the context of large-scale numerical simulation and high performance computing
JO  - MathematicS In Action
PY  - 2022
DA  - 2022///
SP  - 129
EP  - 164
VL  - 11
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://msia.centre-mersenne.org/articles/10.5802/msia.22/
UR  - https://doi.org/10.5802/msia.22
DO  - 10.5802/msia.22
LA  - en
ID  - MSIA_2022__11_1_129_0
ER  - 
%0 Journal Article
%A G. Balarac
%A F. Basile
%A P. Bénard
%A F. Bordeu
%A J.-B. Chapelier
%A L. Cirrottola
%A G. Caumon
%A C. Dapogny
%A P. Frey
%A A. Froehly
%A G. Ghigliotti
%A R. Laraufie
%A G. Lartigue
%A C. Legentil
%A R. Mercier
%A V. Moureau
%A C. Nardoni
%A S. Pertant
%A M. Zakari
%T Tetrahedral remeshing in the context of large-scale numerical simulation and high performance computing
%J MathematicS In Action
%D 2022
%P 129-164
%V 11
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U https://doi.org/10.5802/msia.22
%R 10.5802/msia.22
%G en
%F MSIA_2022__11_1_129_0
G. Balarac; F. Basile; P. Bénard; F. Bordeu; J.-B. Chapelier; L. Cirrottola; G. Caumon; C. Dapogny; P. Frey; A. Froehly; G. Ghigliotti; R. Laraufie; G. Lartigue; C. Legentil; R. Mercier; V. Moureau; C. Nardoni; S. Pertant; M. Zakari. Tetrahedral remeshing in the context of large-scale numerical simulation and high performance computing. MathematicS In Action, Volume 11 (2022) no. 1, pp. 129-164. doi : 10.5802/msia.22. https://msia.centre-mersenne.org/articles/10.5802/msia.22/

[1] Acoustic Reference Nozzle with Mach 0.97, Unheated Jet Flow, https://www.grc.nasa.gov/www/wind/valid/arn/index.html, Accessed: 2021-05-04

[2] ANSA. The advanced CAE pre-processing software for complete model build up, https://www.beta-cae.com/ansa.htm, Accessed: 2021-05-04

[3] Mmg version 5.5.2, https://github.com/MmgTools/mmg (swhid: swh:1:rel:fe173a75f45f079d363d5a82204c9737550c5d79)

[4] Frédéric Alauzet A changing-topology moving mesh technique for large displacements, Engineering with Computers, Volume 30 (2014) no. 2, pp. 175-200 | DOI

[5] Grégoire Allaire; Charles Dapogny; Pascal Frey Shape optimization with a level set based mesh evolution method, Comput. Methods Appl. Mech. Eng., Volume 282 (2014), pp. 22-53 | DOI | MR

[6] Grégoire Allaire; Charles Dapogny; François Jouve Shape and topology optimization, Geometric partial differential equations. Part II (Handbook of Numerical Analysis), Volume 22, Elsevier/North Holland, 2020, pp. 1-132 | Zbl

[7] Grégoire Allaire; François Jouve; Anca-Maria Toader A level-set method for shape optimization, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 12, pp. 1125-1130 | DOI | MR | Zbl

[8] Grégoire Allaire; François Jouve; Anca-Maria Toader Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., Volume 194 (2004) no. 1, pp. 363-393 | DOI | MR | Zbl

[9] Grégoire Allaire; Marc Schoenauer Conception optimale de structures, 58, Springer, 2007

[10] P. Anquez; M. Zakari; G. Caumon Comparing Three DFN Simplification Strategies for Two-Phase Flow Applications, ECMOR XVII, Volume 2020 (2020), pp. 1-21 | DOI

[11] Timothy J. Baker Mesh movement and metamorphosis, Engineering with Computers, Volume 18 (2002) no. 3, pp. 188-198 | DOI

[12] Francesca Basile; Jean-Baptiste Chapelier; Marta de la Llave Plata; Romain Laraufie; Pascal Frey A high-order h-adaptive discontinuous Galerkin method for unstructured grids based on a posteriori error estimation., AIAA Scitech 2021 Forum (2021), p. 1696 | DOI

[13] F. Bassi; L. Botti; A. Colombo; A. Crivellini; M. Franciolini; A. Ghidoni; G. Noventa A p-adaptive matrix-free discontinuous Galerkin method for the implicit LES of incompressible transitional flows, Flow, Turbulence and Combustion, Volume 105 (2020) no. 2, pp. 437-470 | DOI

[14] Pierre Benard; Guillaume Balarac; Vincent Moureau; Cécile Dobrzynski; Ghislain Lartigue; Yves D’Angelo Mesh adaptation for large-eddy simulations in complex geometries, Int. J. Numer. Methods Fluids, Volume 81 (2016) no. 12, pp. 719-740 | DOI | MR

[15] Pierre Benard; Ghislain Lartigue; Vincent Moureau; Renaud Mercier Large-Eddy Simulation of the lean-premixed PRECCINSTA burner with wall heat loss, Symposium (International) on Combustion, Volume 37 (2019) no. 4, pp. 5233-5243 | DOI

[16] Martin Philip Bendsoe; Ole Sigmund Topology optimization: theory, methods, and applications, Springer, 2013

[17] Paul-Emile Bernard; Nicolas Chevaugeon; Vincent Legat; Eric Deleersnijder; Jean-François Remacle High-order h-adaptive discontinuous Galerkin methods for ocean modelling, Ocean Dynamics, Volume 57 (2007) no. 2, pp. 109-121 | DOI

[18] T. Bodin; M. Sambridge; K. Gallagher A self-parametrizing partition model approach to tomographic inverse problems, Inverse Probl., Volume 25 (2009) no. 5, p. 055009 | DOI | MR | Zbl

[19] François Bonneau; Guillaume Caumon; Philippe Renard Impact of a Stochastic Sequential Initiation of Fractures on the Spatial Correlations and Connectivity of Discrete Fracture Networks, J. Geophys. Res. Solid Earth, Volume 121 (2016) no. 8, pp. 5641-5658 | DOI

[20] Houman Borouchaki; Paul-Louis George Meshing, Geometric Modeling and Numerical Simulation 1: Form Functions, Triangulations and Geometric Modeling, John Wiley & Sons, 2017 | DOI

[21] Mario Botsch; Leif Kobbelt; Mark Pauly; Pierre Alliez; Bruno Lévy Polygon mesh processing, CRC Press, 2010 | DOI

[22] Guillaume Brès; Peter Jordan; Vincent Jaunet; Maxime Le Rallic; André Cavalieri; Aaron Towne; Sanjiva Lele; Tim Colonius; Oliver Schmidt Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets, J. Fluid Mech., Volume 851 (2018), pp. 83-124 | DOI | MR | Zbl

[23] José G. Castaños; John E. Savage The Dynamic Adaptation of Parallel Mesh-Based Computation, PPSC (1997)

[24] G. Caumon; G. Gray; C. Antoine; M.-O. Titeux Three-Dimensional Implicit Stratigraphic Model Building From Remote Sensing Data on Tetrahedral Meshes: Theory and Application to a Regional Model of La Popa Basin, NE Mexico, IEEE Trans. Geosci. Rem. Sens., Volume 51 (2013) no. 3, pp. 1613-1621 | DOI

[25] Peter A. Cavallo; Neeraj Sinha; Gregory M. Feldman Parallel Unstructured Mesh Adaptation Method for Moving Body Applications, AIAA J., Volume 43 (2005) no. 9, pp. 1937-1945 | DOI

[26] Pierre Chantelot Rebonds spéciaux de liquides, Ph. D. Thesis, Université Paris-Saclay (2018) (https://pastel.archives-ouvertes.fr/tel-02011789)

[27] Siu-Wing Cheng; Tamal Krishna Dey; Jonathan Shewchuk; Sartaj Sahni Delaunay mesh generation, CRC Press, 2013

[28] Nicoles Cherpeau; Guillaume Caumon; Jef Caers; Bruno Lévy Method for Stochastic Inverse Modeling of Fault Geometry and Connectivity Using Flow Data, Mathematical Geosciences, Volume 44 (2012) no. 2, pp. 147-168 | DOI

[29] Sung Nok Chiu; Dietrich Stoyan; W. S. Kendall; Joseph Mecke Stochastic geometry and its applications, Wiley Series in Probability and Statistics, John Wiley & Sons, 2013 | DOI

[30] Nikos Chrisochoides; Démian Nave Parallel Delaunay mesh generation kernel, Int. J. Numer. Meth. Engng., Volume 58 (2003) no. 2, pp. 161-176 | DOI | Zbl

[31] Philippe G. Ciarlet The finite element method for elliptic problems, 40, Society for Industrial and Applied Mathematics, 2002 | DOI

[32] Paolo Cignoni; Marco Callieri; Massimiliano Corsini; Matteo Dellepiane; Fabio Ganovelli; Guido Ranzuglia et al. Meshlab: an open-source mesh processing tool., Eurographics Italian chapter conference, Volume 2008 (2008), pp. 129-136

[33] Nicolas Clausolles; Pauline Collon; Guillaume Caumon Generating variable shapes of salt geobodies from seismic images and prior geological knowledge, Interpretation, Volume 7 (2019) no. 4, p. T829-T841 | DOI

[34] A. Colombo; G. Manzinali; A. Ghidoni; G. Noventa; M. Franciolini; A. Crivellini; F. Bassi A p-adaptive implicit discontinuous Galerkin method for the under-resolved simulation of compressible turbulent flows, 7nd European Conference on Computational Fluid Dynamics (2018)

[35] Gaëtan Compère; Jean-François Remacle; Johan Jansson; Johan Hoffman A mesh adaptation framework for dealing with large deforming meshes, Int. J. Numer. Meth. Engng., Volume 82 (2010) no. 7, pp. 843-867 | DOI | Zbl

[36] Charles Dapogny Shape optimization, level set methods on unstructured meshes and mesh evolution, Ph. D. Thesis, Paris 6 (2013)

[37] Charles Dapogny; Cécile Dobrzynski; Pascal Frey Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems, J. Comput. Phys., Volume 262 (2014), pp. 358-378 | DOI | MR | Zbl

[38] Philippe Davy; Romain Le Goc; Caroline Darcel A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling: a discrete fracture network model, J. Geophys. Res. Solid Earth, Volume 118 (2013) no. 4, pp. 1393-1407 | DOI

[39] H. L. De Cougny; Mark S. Shephard Parallel refinement and coarsening of tetrahedral meshes, Int. J. Numer. Meth. Engng., Volume 46 (1999) no. 7, pp. 1101-1125 | DOI | MR | Zbl

[40] Sébastien Deck Recent improvements in the zonal detached eddy simulation (ZDES) formulation, Theor. Comput. Fluid Dyn., Volume 26 (2012) no. 6, pp. 523-550 | DOI

[41] Olivier Desjardins; Vincent Moureau; Heinz Pitsch An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J. Comput. Phys., Volume 227 (2008) no. 18, pp. 8395-8416 | DOI | MR | Zbl

[42] Hugues Digonnet; Thierry Coupez; Patrice Laure; Luisa Silva Massively parallel anisotropic mesh adaptation, Int. J. High Perform. Comput. Appl., Volume 33 (2017) no. 1, pp. 3-24 | DOI

[43] Cécile Dobrzynski Adaptation de maillage anisotrope 3d et application à l’aéro-thermique des bâtiments, Ph. D. Thesis, Université Pierre et Marie Curie - Paris VI (2005) (https://hal.archives-ouvertes.fr/tel-00120327)

[44] Cécile Dobrzynski; Pascal Frey Anisotropic Delaunay mesh adaptation for unsteady simulations, Proceedings of the 17th international Meshing Roundtable, 2008, pp. 177-194 | DOI

[45] Akio Doi; Akio Koide An efficient method of triangulating equi-valued surfaces by using tetrahedral cells, IEICE Trans. Inf. Syst., Volume 74 (1991) no. 1, pp. 214-224

[46] Vít Dolejší hp-DGFEM for nonlinear convection-diffusion problems, Math. Comput. Simul., Volume 87 (2013), pp. 87-118 | DOI | MR | Zbl

[47] Guillaume Durey; Quentin Magdelaine; Mathias Casiulis; Hoon Kwon; Julien Mazet; Pierre Chantelot; Anaïs Gauthier; Christophe Clanet; David Quéré Droplets impaling on a cone, Phys. Rev. Fluids, Volume 5 (2020) no. 11 | DOI

[48] Pierre Duysinx; Ole Sigmund New developments in handling stress constraints in optimal material distribution, 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization (1998), p. 4906 | DOI

[49] Alexandre Ern; Jean-Luc Guermond Theory and practice of finite elements, 159, Springer, 2013

[50] Florian Feppon Shape and topology optimization of multiphysics systems, Ph. D. Thesis, Université Paris Saclay, préparée à l’École polytechnique (2019)

[51] Florian Feppon; Grégoire Allaire; Charles Dapogny; Pierre Jolivet Topology optimization of thermal fluid–structure systems using body-fitted meshes and parallel computing, J. Comput. Phys. (2020), p. 109574 | DOI | MR | Zbl

[52] Joseph E. Flaherty; Raymond. M. Loy; Can Özturan; Mark S. Shephard; Boleskaw K. Szymanski; James D. Teresco; L. H. Ziantz Parallel structures and dynamic load balancing for adaptive finite element computation, Appl. Numer. Math., Volume 26 (1998) no. 1, pp. 241-263 | DOI | MR | Zbl

[53] André Fourno; Tri-Dat Ngo; Benoit Noetinger; Christian La Borderie FraC: A new conforming mesh method for discrete fracture networks, J. Comput. Phys., Volume 376 (2019), pp. 713-732 | DOI | MR | Zbl

[54] Tobias Frank; Anne-Laure Tertois; Jean-Laurent Mallet 3D-reconstruction of complex geological interfaces from irregularly distributed and noisy point data, Computers & Geosciences, Volume 33 (2007) no. 7, pp. 932-943 | DOI

[55] Pascal Frey; Paul-Louis George Mesh generation: application to finite elements, ISTE, 2007

[56] Christopher G. Galley; Peter G. Lelièvre; Colin G. Farquharson Geophysical inversion for 3D contact surface geometry, Geophysics, Volume 85 (2020) no. 6, p. K27-K45 | DOI

[57] Fabien Gand; Maxime Huet On the generation of turbulent inflow for hybrid RANS/LES jet flow simulations, Comput. Fluids, Volume 216 (2021), p. 104816 | DOI | MR | Zbl

[58] G. Gassner; C. Altmann; F. Hindenlang; M. Staudenmeier; C. D. Munz Explicit Discontinuous Galerkin Schemes with Adaptation in Space and Time, 36th CFD/ADIGMA course on hp-adaptive and hp-multigrid methods, VKI LS, 2009

[59] Christophe Geuzaine; Jean-François Remacle Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Meth. Engng., Volume 79 (2009) no. 11, pp. 1309-1331 | DOI | MR | Zbl

[60] Jérémie Giraud; Mark Lindsay; Mark Jessell Generalization of level-set inversion to an arbitrary number of geologic units in a regularized least-squares framework, Geophysics, Volume 86 (2021) no. 4, p. R623-R637 | DOI

[61] Gabriel Godefroy; Guillaume Caumon; Gautier Laurent; François Bonneau Multi-scenario interpretations from sparse fault evidence using graph theory and geological rules, J. Geophys. Res. Solid Earth, Volume 126 (2021) no. 2, p. e2020JB020022 | DOI

[62] Antoine Henrot; Michel Pierre Shape Variation and Optimization, EMS Tracts in Mathematics, 28, European Mathematical Society, 2018 | DOI

[63] Simin Huang; Florian Wellmann; Gabriele Marquart; Michael Herty; Christoph Clauser Shape Optimization Methods Locating Layer Interfaces in Geothermal Reservoirs, Energy Procedia, Volume 76 (2015), pp. 321-330 | DOI

[64] M. Karimi-Fard; L. J. Durlofsky A general gridding, discretization, and coarsening methodology for modeling flow in porous formations with discrete geological features, Adv. Water Resources, Volume 96 (2016), pp. 354-372 | DOI

[65] M. Karimi-Fard; A. Firoozabadi Numerical Simulation of Water Injection in 2D Fractured Media Using Discrete-Fracture Model, All Days (2001), p. SPE-71615–MS | DOI

[66] Tobias Leicht; Ralf Hartmann Error estimation and hp-adaptive mesh refinement for discontinuous Galerkin methods, Adaptive high-order methods in computational fluid dynamics, World Scientific, 2011, pp. 67-94 | DOI | Zbl

[67] Tobias Leicht; Jens Jägersküpper; Daniel Vollmer; Axel Schwöppe; Ralf Hartmann; Jens Fiedler; Tobias Schlauch DLR-Project Digital-X-Next Generation CFD Solver’Flucs’, CEAS Aeronautical Journal (2016)

[68] Daniel S. H. Lo Finite element mesh generation, CRC Press, 2014

[69] William E. Lorensen; Harvey E. Cline Marching cubes: A high resolution 3D surface construction algorithm, ACM SIGGRAPH Comput. Graph., Volume 21 (1987) no. 4, pp. 163-169 | DOI

[70] Adrien Loseille; Frédéric Alauzet Continuous mesh framework part I: well-posed continuous interpolation error, SIAM J. Numer. Anal., Volume 49 (2011) no. 1, pp. 38-60 | DOI | MR | Zbl

[71] Catherine Mavriplis A posteriori error estimators for adaptive spectral element techniques, Proceedings of the Eighth GAMM-Conference on Numerical Methods in Fluid Mechanics (1990), pp. 333-342 | DOI | MR

[72] Marek Krzysztof Misztal; Jakob Andreas Bærentzen Topology-adaptive interface tracking using the deformable simplicial complex, ACM Trans. Graph., Volume 31 (2012) no. 3, pp. 1-12 | DOI

[73] J. E. P. Monteagudo; A. Firoozabadi Control-volume method for numerical simulation of two-phase immiscible flow in two- and three-dimensional discrete-fractured media: SIMULATION OF FLOW IN FRACTURED MEDIA, Water Resources Research, Volume 40 (2004) no. 7 | DOI

[74] Vincent Moureau; Pascale Domingo; Luc Vervisch Design of a massively parallel CFD code for complex geometries, C. R. Méc. Acad. Sci. Paris, Volume 339 (2011) no. 2-3, pp. 141-148 | DOI | Zbl

[75] Vincent Moureau; Pascale Domingo; Luc Vervisch From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling, Combustion and Flame, Volume 158 (2011) no. 7, pp. 1340-1357 | DOI

[76] F. Murat; J. Simon Sur le contrôle par un domaine géométrique (1976) Pré-publication du Laboratoire d’Analyse Numérique, (76015)

[77] Hussein Mustapha; Roussos Dimitrakopoulos Discretizing two-dimensional complex fractured fields for incompressible two-phase flow, Int. J. Numer. Methods Fluids, Volume 65 (2011) no. 7, pp. 764-780 | DOI | Zbl

[78] Fabio Naddei; Marta de la Llave Plata; Vincent Couaillier; Frédéric Coquel A comparison of refinement indicators for p-adaptive simulations of steady and unsteady flows using discontinuous Galerkin methods, J. Comput. Phys., Volume 376 (2019), pp. 508-533 | DOI | MR | Zbl

[79] Andrej Neifeld; Dirk Boenke; Juergen Dierke; Roland Ewert Jet noise prediction with Eddy relaxation source model, 21st AIAA/CEAS Aeroacoustics Conference (2015), p. 2370 | DOI

[80] Leonid Oliker; Rupak Biswas; Harold N. Gabow Parallel tetrahedral mesh adaptation with dynamic load balancing, Parallel Comput., Volume 26 (2000) no. 12, pp. 1583-1608 | DOI | Zbl

[81] Stanley Osher; Ronald Fedkiw Level set methods and dynamic implicit surfaces, 153, Springer, 2006

[82] Stanley Osher; James A Sethian Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., Volume 79 (1988) no. 1, pp. 12-49 | DOI | MR | Zbl

[83] Dimitris Papadopoulos; Michael Herty; Volker Rath; Marek Behr Identification of uncertainties in the shape of geophysical objects with level sets and the adjoint method, Comput. Geosci., Volume 15 (2011) no. 4, pp. 737-753 | DOI | Zbl

[84] Michael A. Park; Adrien Loseille; Joshua Krakos; Todd R. Michal; Juan J. Alonso Unstructured Grid Adaptation: Status, Potential Impacts, and Recommended Investments Towards CFD 2030, AIAA AVIATION Forum, American Institute of Aeronautics and Astronautics, 2016 (art. 3323)

[85] Per-Olof Persson; Jaime Peraire Sub-cell shock capturing for discontinuous Galerkin methods, 44th AIAA Aerospace Sciences Meeting and Exhibit (2006), p. 112 | DOI

[86] Savinien Pertant; Manuel Bernard; Giovanni Ghigliotti; Guillaume Balarac A finite-volume method for simulating contact lines on unstructured meshes in a conservative level-set framework, J. Comput. Phys., Volume 444 (2021), p. 110582 | DOI | MR | Zbl

[87] Jean-François Remacle; Joseph E. Flaherty; Mark S. Shephard An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems, SIAM Rev., Volume 45 (2003) no. 1, pp. 53-72 | DOI | MR | Zbl

[88] Jean-François Remacle; Christophe Geuzaine; Gaëtan Compère; B. T. Helenbrook Adaptive mesh generation and visualization, Encyclopedia of Aerospace Engineering, 2010 | DOI

[89] Pierre Sagaut; Marc Terracol; Sébastien Deck Multiscale and multiresolution approaches in turbulence-LES, DES and Hybrid RANS/LES Methods: Applications and Guidelines, World Scientific, 2013 | DOI

[90] James A. Sethian Fast marching methods, SIAM Rev., Volume 41 (1999) no. 2, pp. 199-235 | DOI | MR | Zbl

[91] James A. Sethian Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 3, Cambridge University Press, 1999

[92] Jonathan Richard Shewchuk What Is a Good Linear Finite Element? - Interpolation, Conditioning, Anisotropy, and Quality Measures, Proceedings of the 11th International Meshing Roundtable (2002), pp. 115-126

[93] Hang Si TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Softw., Volume 41 (2015) no. 2, pp. 1-36 | MR | Zbl

[94] Jan Sokolowski; Jean-Paul Zolésio Introduction to shape optimization, Springer, 1992 | DOI

[95] Philippe Spalart Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach, Proceedings of first AFOSR international conference on DNS/LES (1997)

[96] Philippe Spalart; Steven Allmaras A one-equation turbulence model for aerodynamic flows, 30th aerospace sciences meeting and exhibit (1992), p. 439 | DOI

[97] The CGAL Project CGAL User and Reference Manual, CGAL Editorial Board, 2021 (https://doc.cgal.org/5.3/Manual/packages.html)

[98] Joe F. Thompson; Bharat K. Soni; Nigel P. Weatherill Handbook of grid generation, CRC Press, 1998 | DOI

[99] M. G. Vallet; F. Hecht; B. Mantel Anisotropic control of mesh generation based upon a Voronoi type method, Numerical grid generation in computational fluid dynamics and related fields, North-Holland, 1991, pp. 93-103

[100] Li Wang; Dimitri J. Mavriplis Adjoint-based h-p adaptive discontinuous Galerkin methods for the 2D compressible Euler equations, J. Comput. Phys., Volume 228 (2009) no. 20, pp. 7643-7661 | DOI | MR | Zbl

[101] Florian Wellmann; Guillaume Caumon 3-D Structural geological models: Concepts, methods, and uncertainties, Adv. Geophys., Volume 59 (2018), pp. 1-121 | DOI

[102] Chaoshui Xu; Peter Dowd A new computer code for discrete fracture network modelling, Computers & Geosciences, Volume 36 (2010) no. 3, pp. 292-301 | DOI

[103] Liang Yang; David Hyde; Ognjen Grujic; Celine Scheidt; Jef Caers Assessing and visualizing uncertainty of 3D geological surfaces using level sets with stochastic motion, Computers & Geosciences, Volume 122 (2019), pp. 54-67 | DOI

Cited by Sources: